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AUTHOR’S FOREWORD

UnLess higher education is to assume an increasingly authoritarian aspect, increasing demand
for statistical instruction by an ever-widening range of specialties is 2 challenge inviting more
diligent concern than it has so far provoked. That less than 1 per cent. of research workers
clearly apprehend the rationale of statistical techniques they commonly inveke would be less dis-
turbing if the logicians of science were themselves unanimous on matters of anything but trivial
importance, or if those who resort to prescribed procedures had alternative means of checking
their claims.  Neither the one nor the other is true. With or without a knowledge of its theo-
retical rationale, the laboratory worker can call to his aid with a clear conscience a device such as
the glass electrode or the spectrometer, because he can, and in practice usually&{oes, calibrate a
new physical method by recourse to a known standard; but there is no known standard by which
we can assess the long-run results of acting on the assumption that the{fawmnous postulate of
‘Thomas Bayes leads more or less often to correct Judgments about the World we live in.  Nene
the less, its implications are by no means trivial ; and statisticians of ghod repute are of diverse
persuasions concerning its credentials. O

One therefore hopes that an attempt to present the elementg-efistatistical theory by exploiting
a new educational technique will commend itself to the sympati¥tic consideration of statisticians
who are also interested in education. If the execution of\the undertaking falls short of what
morc expert use of visual aids may accomplish, it is thelatithor’s hope that a novel approach to
the logical assumptions inherent in the symbolic treatment of statistical metheds will stimulate
others to undertake with greater success what he ha¥ failed to achieve. Since it is the fashion
to decry that part of statistical theory which righﬂjz pertains to large samples, it is necessary to
explain that the second volume in preparationifor the press is an attempt to present the basis
of more modern procedures without leaving the solid ground of statistical models to clarify
the naturc of the null hypothesis tmpli¢is in the mathematical postulstes. Such is the method
of this volume, illustrated at the gutéet (p. 98) by Fisher’s illuminating tea-cup parable.

Many useful manuals set forﬁlﬁs\andard methods of statistical analysis for the student who
is prepared to take the formule ftrust. A few authoritative treatises deal with the rationale of
statistical techniques for the*hérefit of the reader who can employ mathematical operations for
which enly trained mathediaticians have the requisite facility. This book is neither for the one
nor for the other. W6L)T has little to say about statistical techniques which have lately
come into widespread mse among research workers content to apply them without an under-
standing of their g;e‘dentials. Though avoiding issues of rigour which the author is not com-
petent to arbitfate’upon, it deals only with statistical methods for which it can offer the reader
a rationale en rdpport with the rules of algebra and diffcrential calculus nowadays included in
the higher school leaving syllabus, if supplemented with a few less accessible theorems set forth
in the introductory chapter. Thus it is for those who prefer to use traditional methods of
which they understand the implications—and therefore the limitations—rather than to rely on
more refined devices whose theoretical postulates are open to controversy or beyond their powers
of appraisal.

It is a pleasure to acknowledge the patience with which Miss Gladys Haines collaborated
with me in the lay-out of the visual material. Should the method of presentation appeal to
other teachers, some may be interested to know that the illustrations are obtainable from the
publishers as a 2-colour complete sct of 84 wall charts.
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CHAPTER 1
FIGURATE NUMBERS AND FUNDAMENTAL
APPROXIMATIONS

INTRODUCTORY REMARKS

O\

'THE student who is not an expert mathematician experiences difficultigs ‘of two sorts in
appraising the validity and scope of statistical techniques. Some arisecbedause the type of
mathematics on which the latter rely calls for prolonged excrcise and conéidérable aptitude ; but
difbiculties of this sort do not constitute an insuperable obstacle toy «an’ understanding of the
basic principles of probability. Discouragement of another kind axiscs less because essential
manipulations are intrinsically difficult than because they are unfashiliar. Indeed, it is well-nigh
impossible to recapture the thought of those who laid the foutidations of the theory of chance in
the seventcenth and eighteenth centuries, unless onc has sgmeknowledge of relatively elementary
algebraic devices without a niche in the college or highet’school text-books of to-day. The
historical reason for this lacuna is not far to seek. Triumphs of mathematical skill in the domain
of physical mcasurements have encouraged incréasing preoccupation with the infinitesimal
calculus and with such parts of algebra as lie on:’;'he' road to it. In short, the coentinuum is the
keynote of contemporary courses from whichithe beginner may carry away the conviction that
algorithms now mastered before the teen.ages circumseribe any practical use pertaining to the
propertics of whole numbers as such.

'This is unfortunate, because l%e‘.ﬂ’leory of statistics * is always about what we can count
individually ; and only sometimesabbut what we can also measure. It is important to be explicit
about this feature of statisticalgnalysis at the outset, the more so because it is not uncommon
to sce methods devised for(tyeatment of small samples specified by metrical characteristics
extended beyond their Icgiﬁfnatc terms of reference or the presumptive intentions of their
authors to the treatmentoef small samples specified by all-or-none attributes. Numbers which
specify individuals gt\items of an assemblage are necessarily whole numbers like the number of
sheep in a field, here may be 50 sheep, 51 sheep, or 50 sheep plus a certain amount of mutton ;
but there cannbt'be 50987 sheep in any field.

For this redson, we here start, as Pascal started, with some preliminary theorems not com-
monly dealt with in modern text-books of elementary scope though by no means recondite on
that account, Our first chapter contains some material which will not be new to many readers
who may find more novel substance in later ones, and much that may well be new to some readers
sufficicntly familiar with the elements of differential calculus to follow subsequent arguments
which invoke its use. In either case, the reader will be wise to skim through its pages at the
outset to get a bird’s-eve view of its contents hefore devoting detailed study to sections which
‘break new ground. The first three sections (1.01-1.03) call for comment because they introduce
symbols employed consistently throughout the rest of the book. Others, notably 1.05 and
1.06, introduce essential algebraic theorems which will be new to readers whose knowledge of
algebra does not embrace the study of finite differences and the elementary properties of hyper-

¥ Le. Sampling theory in contradistinction to frequency theory of aggregates of molecules, genes, etc.  {See remarks
on page 99
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geometric series. The latter half of 1.02 and the greater part of 1,08 are not essential to what
follows. 'The same is true of pp.72-74 in Chapter 2. 'The justification for their inclusion iz the
text is that they provide peculiar opportunities for exercise in algebraic manipulations of « type
rarely invoked in elementary text-books but useful for the student of mathematical probubility,
For the reader not familiar with more advanced modern text-books the following explana-
tory remarks about convenient symbols may be necessary. If we think of zero as an arbitrary
point in a scale or sequence with the domain of negative and positive integers respectively to
the left and right in accordance with the Cartesian convention, —3<<0 < 4+ 20 -5 =0 4,
so that in general 4+ a> — aand — & < + b When we wish to signify that x is sumerically
greater than y regardless of sign we write x> | y| (“« greater than mod y”') or |y| = »
Tor x not less than y (i.e. x equal to or greater than y) we write & > ¥ in preference to x 4 .
Similarly, for x not greater than y (i.e. x equal to or less than y) we write x°<Q\y in preference
" tox % y. One other symbol is of great importance, since so many statistjgdl formulzx are con-
venient approximations precise enough for practical needs. In contradistinction to ==, our
symbol ~ signifies approximately equal to., N
It is reasonablc to assume that some readers with sufficient dackground to benefit from
any uses this book may have will have forgotten some of the‘aflg'ebra, more especially difier-
ential calculus, necessary for the exposition of principles sepforth in later chapters. Accord-
ingly, the writer has taken the precaution to intercalate sgetions to provide opportunitics of
revision for readers who have not ready access to textdbdoks of mathematics. ‘lhe exercises
are designed, where possible, to anticipate subsequgdtthemes ; and an asterisk signifies that
a result will be of use at a later stage. "The insertipn' of certain lemmas as exercises on a relevant
class of operations is intentional to dispense with the need for digressions which distract attention
from the main issue ; and the reader will be well advised to pay attention to them, as they arise,

Ny

101 SyMBOLISM oOF CONT‘N\\UED ADDITION AND MULTIPLICATION

In the mathematical analysis of qhb&e and chance we frequently have recourse to expressions

in\.rolving continued sums or produtts. It is customary to represent the operation of summation
briefly by use of the Greek capital s (sigma) thus :
A\

$ r=n
\:""a0+a_1+32+---+aﬂ—1_:antzaa:-
& \'\ =10
In operations 1n?'p\1§/i1hg summation, it is important to remember the following relatien :
’vs"“' =48 K== f refg—1)
Sa=3a-3 a . . . . .
¥=a =1 x=]

By analogy, we may use the Greck capital p (

#1) to indicate briefly a product of terms referable
to a common pattern as thus :

X=n

Ayl oty . . . aﬂ_l.an'—-ﬁn.agg.
If % is a constant, we have T
Fw=p =4 =N e
z ka, = kz @, n ka, = k““” ag.
=0 x=0 F=0 r=0

For the class of continued products represented by n! or iz the corresponding formula would be

mle=nln —1)n —2) . . .3.2.1 ;=ﬁ1)(n—x)-

z={
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For such products of which successive factors differ by unity, there is a more economical nota-
tion of factorial powers, based ori analogy with the meaning of whole number cxponents, as shown
below :

n =mnt # = gt
n.m = p? n{n — 1) — pi2
7.on.n =n3 n{n — ){n ~ 2) = n!®
n.n.n.n —=nt n(n — 1)(?3 — 2)(?1 _ 3) = pld
#.n.n.n . . . ¥ factors ——n" nwn — 1)(n —2)n — 8) . . . rfactors. =ni"

The last of r factors in such a product is (7 — v + 1), Accordingly

0 emnln — Dn —2)(n—-3) . . . (n—r - Dm—r 1) N - . (i)
By definition \ ¢
o _ . w _ 1<
a® =n(n —1{n —2)(n — 3} . . . n factors = o\ N, . . {11)
If & = 7, by definition A

(x — 7)) == (x—?)(x——:r—l)(x —r—2) . .3.2,@3
A e — ) —2) . —r 1) e
. x‘-’"(x—r)!-—-x(x— De—2) .. (x—r - Doexx—7—1)...8.2.1
== xl PN
. r] — _x.‘l_____ ’..t\ - . . . 1v
. xln — R . . RO . . (1v)
Thus ™

70 7 .6.5. 43(7 6,54 3.2.1)<-(3.2.1).

Ancther useful formula involving facton’d p(mers is deducible by reversing the order of the
factors of a preduct Q

an + Dn+2) . .. rfa{ééui‘é:n(n +1(n+2)...(n+r—2)n+r—1).
If we reverse the order, \Qu have

{\n “r—Dn4r—2) ... (n+2)n+ n B
-—(??‘ rQi)nJrr_I_I)(ﬁ_g)...(nﬂ—l—w.-l)
(n—}—r«—l)(n sy —2Yy ... 7 factors. _
”\w” Son(n - D +2) ... factors = (v f ¥ — 1) . . - )

Several important properties of factorial powers follow from the following relation which holds
good if # = -

0 e A —2) . (52— D — s )
W D=2 2 U : (x—n—x—n 1)

=[xfx ~1) ... (x—m- D][(x —m)x—m—1) ...
(x—?;z—ﬁT;z—.l—Z)(x——m—n—wm—]—I}]

== ylml (ﬁ? — m){n-m]

Suhjf,c’r to thc same condition, the laws of composition of factorial indices follow at once from
thlS '(_1;2

x(ﬂi [n— b (Vi)
A ) — [xw)2p — m)m gnd o == (& — m) E .
: x

{m)
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If we put m = 0 in either of the last two expressions, we get

o) — (D) gin)

Lal® =1 . . . . . . . (vi)
Also from (iii) and (iv)
' nin! n! 1
o i T
=1 . . . . . . . . {vidl)

It is useful to memorise formulae (1)-(viii) above.

EXERCISE 1.01 QO
=4 X=mn ':\

1.* Show that T ab= a7 . O
=0 3

2. Make an 11 X 11 table exhibiting the values of a” for all v@ucs of a from O to 10 inclusive
and all values of » from € to 10 inclusive.

3. Make a table of factorial #! from 0 to 12 inclusive. ='\\"

2%
b

P

4, Find the numerical values of : Y
74 10® 4(3) " g
3@ 50 S 9(6: BETICIN
5.* Irwestlgate the meaning of xi-—» bxrecourse to equation (vi) above.
\
6.* By recourse to (vi) and (vii), s@ﬂ‘nat the reciprocal of the factorial of a negative number is zero.

NI u, = s = fie show.i;hét
:‘s\' s+l (g_x)

AN Uy =
N e L A

\,

8.* In the same ,v@y, show that

| "<' U ff—x—.— 1)
Q" e
r=kn—1
9.* Show that (kn)l = Ron ‘ﬂ' ( )

10.* Establish the following identities ;

(@ (ab)n — ‘:m!rrm=]'['_l (1 — am—b) :

@ e

@)?

11.* Use the results of Ex. 10 to show that

2.4.6.8...2% (n! 2)2
a = TE et
@ 357, . @m-" "~ @y
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o w=G T (-4)-

F=n=—-1
logn!=n.logn z log(l “;E)'

r=1

1%.* Bhow that

102, FIGURATE SERIES

Certain series of numbers have a history which goes back far into the past. They intrigued
the Pythagorean brotherhoods of antiquity. They attracted much attention fom the Hindu
pioncers of algebra and their Moorish successors. Pascal, the father of mathematical probability,
wrotc a treatise on Figurate series, and we may appropriately follow his c\kéxﬁple by examining
their properties as a prelude to a modern treatment of choice and chancé.

The figurate series which are our chief concern in the context of modern statistics have
this in commeon. We can generate terms of any such series from 48 predecessor in accordance
with the rule for generating the natural numbers from a succes"s‘j}m of units——the parent of alt
such series-—as shown below :

AN/
Units : 11 1 1 & ...
Natwral mombers: 1 (141) (1+1+1) (1-REP1+1) (Q+14+141- ...
= =3 ':"524 =5 ...

The first of the succeeding series generated in aggordance with this plan is the triangular numbers.

Netural numbers : 1 2 3 4 5...
Tvianguler mumbers: 1 (1 +2) (14+2+3) 1 +2-+3+4) (1+2+3+4+5) ...
1 =3 8 —10 —~15. ..

The next series of the same fath\ily is the fetrahedral numbers :
1 {1 4+3) (1 8+ 6) (1 +3-+64+10) {1+3 46410 + 15)
__ L) — 35

1 =4 =10 == 20 =
By analogous summati&g’",}a;é may build up super-solid numbers of 4, 5, . . . etc., dimensions,
: Q
e.g. . N\ .
i (1—{—@ 1+4+10) (1+44-+10-+20) (1+4+1076|~20+35)
1 =N =15 =35 =
1 (1\*):5) (1+5-+15) (14+5+15+35) (1-+5415-35+70)
1 =6 =21 =56 =126

In accordance with the visual represéntation of the first four of these series we specify each
by its dimension d, as follaws :

Representation d Series
Point ] 1 1 1 1 1...
Line 1 1 2 3 4 5...
Triangle 2 1 3 8 10 l§ e
Tetrahedron 3 1 4 10 20 §a C
Buper-solid 4 1 5 15 35 70 ...
” 53 1 6 21 56 126 . ..
6 I 7 28 84 210 . . .

LE]
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ROW
i~ -
OFF' OF,= OF,= OF, = DF5= Fe=
0O 1 1 1 1 1 1
‘F,= 'F,= 'Fy= 1F4'—‘ 1"-5_ 1F6=
' i 2 3 4 5 6
2F1= 2F2= 2F3_ 2F4= 2Fs= 2F6= N
2 ! 3 6 tO 15 21 \
. - s
3F1 = 3F2: 3F3= 3F4= 3F5 = | ' ::«,?Fé =
31 4 4 | 10| 2| 33D s
°F, 4F2 4Fa 4F4 \\?Fs 4F6
\ v
4 1 5 15 35, O 70 126
°F, °F, F,  [WO°F, °F, °F,
> 1 6 20 N 56 126 252
o COLUMN
! 2 3 4 5 6 ©
Fig. 1. TThe first five Figurate blug;bers Series generated by successive Addition from a Sequence of Units.
AX

The term of mnk§1 of all such series Is itsclf unity.

same class is the arithimetic progression whose common difference is 1.
is the series wha§® terms are sums of this A.P.

The one-dimensional figurate of the
The two-dimensicnal

We shall here denote a number of rank # and

dimension % geries of this family by the symbol 2F,, in accordance with the following scheme :

Fy=1 F,—1
F,=1 F,—2
=1 *F,=3
=1 3F, —

F,=1 4F,—5

oF, =1
1p, =3
tF, =6
3F, = 10
ete., el

OF, =1...
F, =4 ...
Fy=10 . .
W, =20 ...

From the law of generation exhibited in preceding tables it is evident that

&=t

1F‘R:ZOFW; 2Fﬂ.

xeml

X=hn

=2 'Fa;

r=]

and in general, for positive integral values of d and #,

Tmn
3Fn == z aer
xe=1
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o . ® . °
T B e e %
. 'Y ose sese YY)
lE-' 15-2 |3H3 iE'A F5-5
™
8 e
] te
) oe 4.1 :::- N\

* L oo o080 soees
A 550

-

-1 s E-0

Fie. 2. Visual Representation of the first four Figupa‘:té‘Series of Fig. 1 as Points (z:'era d_imensions), Lines (one
dimensional figures), Triangles (two dimensions) and Tetrahedra (three dimensions).

. :...S _
4 '\\ ‘ aHLF :xiﬂ i, . . : . . ()

o Ny x=1

A</ -

An expression for theytriingular (*F,) numbers of rank » follows from the fan.ul?ar fo.rmula

for the sum (8, of an &P, @y, a5, . . . a,, viz. S, = in{a, + a,). The A.P. is in this case
the natural zzumber,sr'&‘é's 1,2,3, ... ns0thate =1and a, =n:

SO S = (1 k) = e+ DT = 1= K+ 1),
N _rD® @raone
s Fn - 2 = 2! -

Fig. 3 shows a visual representation of the genesis of the formula, and Fig. 4 shows the
_gEPESiS of the corresponding formula for the tetrahedral numbers {1, 4, 10,20 . . .) for which
1t1s easy to derive an expression by trial and error, viz. :

sF — (n + 2)((;; + 1) _ {n —]—33{— 1)!31'

Formule for the series of higher dimensions can be severally O}E;ta'inet:f by the x‘nithot(zl of
1.05 below, but the generalisation of the pattern common to the above is justifiable by induction.

For the firss four series we have
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OF,=1=(m+0— 1)® = Qlin accordance with {viii) of 1.01,
Fo=n=(m+1—1)0 =1L

Fo=(n-+2—1)» =21

°F,=(n ~3 —1)® -3,

In gencral, we have

g i
aFﬂ:(%;)__ . . . ) . (1)

In accordance with (iv) in 1.01 we may also write this ss

gp _d-nr

fodlm— 1)
Thus, the 4th term of the scries 1, 7, 28 . .
6 +4 — 1! 9!

&

I'rom (i) it follows that

GHIF — OF, —

(i)

N

. . f’\,,\‘. . .
- €tC,, 1n agreement with the #oregoing table is

_®+4—-1)) 9 9,87 ,Q
P mg-mm'_smr_%z 1

N/

#*
\

(4 +1 )
a (LW

d| N
5 o0
(V)
~ @ ol
WwH+1—n_
O @rya=n

dHF:@é+a + 1) (d 2 1)

SO YT R Te p—
A
_ @+,
‘§s.l (d—Ll)l(de)
» _@Fir2—
‘§> d+ 2 —n
SN, — up, L ap, | ap, _ _@+2 @+3—1y
@ T A =1y
@2t d+1
T ){ "2 l
. (d+3y
IRCESYE
@131

@+DrE -
crp _ @+ 1 +n—1)

and, in general, il
BT S T
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'The form of this expression is identical with (111) above, and we know that (1ii) is true when
d==2. Ilenceitistrue whend =3. Iftrue whend — 3, it is also true when d = 4. and so on.*

In Fig. 1, identical rows and columns succeed one another in the same order. ,If we label
the rows and columns of figurate series of successive dimensions, so that figurates of row r are

r-dimensional and the column ¢ specifies the rank, we see (Fig. 11) that
2F, =3, — +1F,
:;FG — SFS = B—1F4+1’
5F, = F, = -1F,,

In general, therefore,

This is consistent with (ii) and (ii1), since we then have

N

e—1 r+14+e—1 —1)“"“_(r+c__1)w\i}l'.\

r+1 = (C — 1)] = (c _T’l)r
= (? + € — I)I 2 :‘.t :
rte—T1—rc—D)l(c— N
e+ —1) \
ol e — 1) D

R4
By means of (i) and (ii) or (iii), it is possible to sum(hany series of a type we commonly meet in
the theory of choice. We may combine (i) and ({i)n the formula :

=2 (% 4 d -, ‘1’)'(}:;1 _ (n 4 dyer N
z ”d! k. ._ ER . . . . {iv)

=]
AN
Exemple.—We may use {iv) {(ﬁﬁi’ld the sum of the squares, cubes, etc., of the natural
numbers, by proceeding as follows *
wr+1) n? #

ﬂ“: — 4=
-z ety
Ny e
O e o
O rg=ts
NN Int =23, — 3Sn=2.%F, — F,.

L 3

In accordanc%-’i}th (i) in 1.01 we may generalise the limits of summation in (iv) as follows when
b and g are both positive :

SErd-)e Serd 1@ et d =)@

xg‘; d! =1 d! rm1 4!
(B4 ey (@ d - 1) ")
@+ 1) (@ + 1)l A
The required summation may take a form which demands redefinition of the limits, e.g. :
Kb x=b(x_c+d__1)fd)
xz dFm—c :x=a d! .

* For an alternative proof of (ii) see the method of Example 1 in 1,10,
2
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When it is necessary to sum 2 series in this form, we proceed thus : Put Y ={(x~—¢), so that
x={y+e) Whenx:b,y:(b—~c)andwhenxza,,y=(a—c):
Kb y={B—r¢
D, = > 9F,
LT y={g—¢)
¥ lb—c) y={a_c=1)
— z aF, — z if,
¥y=1 y=1
-t d)yevy (g g I)te+1is .
o @+nr T @+ 1) S

In this context, it is important to note a peculiarity of the triangular family of series defined by
(ii). In accordance with (v) in 1.01 we may put N

o :n(ﬁ+1)(n+2)...(n+d-_1)’ .\:.\

n d! O
= 4Fy =0, when d> 0, N
A N AT e B TN
¥=1 - Xe=[)

When d =0, this relation does not hold good. For “Eg,}—\-'l.
**%* The operation defined by (1)-(ii1) and (viipigvalid only if # is positive. By applying

the formula 2F, = $n(n 4 1), we can extend the serjes:(); 1,8,6,10, ... into the negative domain ;
but the addition rule which relates this series 109F, = nis no longer valid. For the series
R may calculate results of the ;ppﬁcation of the appropriate formulz thus :
Jo =6 =5 43 3V 0 1 o g 4 o
K, 15 10 6 3,801 0 0 1 3 6 10 15
F, —20 —10 —4 J\i\* 0 0 0 1 4 10 20 35
iF, 15 5 10 0 0 0 1 5 15 35 70
The rule of summation in tl;\e:r}e;gativc range is deducible from the above when ¢ >0, viz. :
xf\';.,,
':\\xgo iF -a {— 1), MIFn—dH . . . ) ] ] (viii)
'n‘:; X=4n
\m; b x:z_mdFm =LA (=D E, (ix)
Thus
=5

*Fo = "Fy + (— 1)39F, =70 — 35 — 35
£=—§
:(-—20+—10—4-—1+0J,—1+4+10—}—20 + 35).

 Norte (for exercise only).—The one-dimensional series of the family discussed above is an
AP whosg common difference is 1. From A.P.s (Fig. 5) of which the term of rank 1 is unity
we may build up analogous families defined by the common difference. From the series of odd

(numbers (common difference 2) we can generate series in accordance with

th i inci
Fig. 6) as follows | e foregoing principle

*HE* Omit on firet reading,
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Row I 3 5 7 9...
(1—}—3) 1+3+5 (13+3+517 ) A 4+34+54+749)...
Square 1 =9 =18 =25 .
. (1—{—4) (1+449 (Q1+44+9+ 16) (1+4—[—9+16—|—25)
Pyramid 1 =5 =14 =30 =55 ...
L 280008 &
Qg LA T 2 X T-T. ]
8 o SNR0O0, &
e = seesonote
& SROOCO &
M ®00000 &
2% = n®+n 8
O\
Ve \
2 . n’+n | e (N
n 2 2 N

Fic. 3. 'The build-up of a Formula for the Triangular Nuﬁ\ée;- Series of Fig, 2

\~
- '\ + 3+ 6+10+15+23
ao8 = o2 H
Tl s‘. E HAR AT 4
8400808008 1“‘ =F

GBSO NPBIOPLSS
...O‘COOG0.0.‘OQGQOOB‘ N

[

800a6AAREONA0TD SOIRED - H
0000600086605590950650 ©+R2-6+0%
860000000080600500866
PR RRNADRPGO ROV ADDE
eoeoo:o.oaaan{\ 08000
88333938883%& Y- 1T

890&09309@@9@@0990080

00EI0808R0CODCEO00GE B+DE+E -

029886680300000050
4 BOLERCALHBL00
§ 6REGRR00CD0
I 268000
\s¢

"D
L 2:-2-1-1-1
L4 XX 50

x*%)

]
L5
L)
-
¥
wr
P |
*
-
-
5]
+
~
Tl

E}

-1 24X

]
r
=7

W+ 2FE-E=27%
CUBJR6 + 2

.'..F.' + -2.4- []

S ot g

Fis, 4. The build-up of 2 Formula for the Tetrahedral Numbers of Fig. 2.
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L LA

[ ] a8 L] L
™ ....

LR ]

Fe1 B-s Ren

Fig. 5. Two-dimensional Figurates represe
The Common Diﬂ‘ezél

N\

ces are (in successive rows) 1, 2,3, 4,

\ »e senes (11 TYTT) LI IITY Y
.F--\i}.'ﬁ-s Fes K-z Fes
\© Fenwn

,:\ ] .:a
T, L 1] ] L3l ] 1.3
* *e e L 22 7] aked e
N LT senen seenysg (T
\m‘:“ F-r Eea Res Foet R
2 - - - 1
x f(ax 0 =n senae
L -3 1LY X3
*he L& 1 X Idede
L X ] .1 ]} LE T E L2 1% 3]
» e [ 1] ] L1 1 X e R

Fia. 6. Finding a Formula for the sum of the first # Odd Numbers by the Figurate Method,

From the series whose common difference is 3 we may
pyramids and 4-dimensional super-solids :

Row 1 4 7 10 13 16 ...
Pentagon 1 5 12 22 35 1. ..
6-Face pyramid 1 8 18 40 75 126 . ..
Supersolid 1 7 25 65 140 286 .

sEEAOLED

N\ ]
ntibg the sum of Arithmetic Progressions whose first Ferm is Unity.

generate the pentagonal numbers, 6-faced
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L)
o
L)
o ©esa
.':‘:‘. o:.:o:_.:.:o
OO0 R _ ssonele
e
E=i+2m-0+F, E-1+3(-n+2'E,
- @-D-D+@~2DE.,  -1+@-Nin-na-DF..
®
%
% %a
obe_aTe
©%e%:%e%,
* e_e s @
XTI e5e0e¥e 0%e2e%
% Tely +%e’e %%
LAY LY L 0gt e, o%e el
L . e ® 2% e® e%
Nteterac®,0f %0, e“ele
Yoo’ sgay %o "o _s® _a% N\
Seeensasel ot e, "a® _e%eg
L EYY T .‘.. .‘o.. oo O\
Soeeesee’ 0.. o.. ..o ..c;a\ “
¢csassee ., o® .
e ¥ .
... & ™

:E' +(5-Din-p+ (5"2); F. :E-=[+(6 -|)(n_,)";:§6’; 2 :E_2

JE-1+E-Dn-D+ -
A
=|+ (&1} (n-l)«-ﬁiﬁ.m_-w
-Js-2n-p+2)
Fie. 7. Finding a Formula::fo:the Figurate Numbers of Fig, 5,

In families of this pattern the relatiombetween the common difference (c) of the parent 1-dimen-
sional A.P. and the number (s)ef\sides of the 2-dimensional figurate representation is given by
¢ ={s—2)or s ={(c+2). Ifwe represent the term of rank # and- dimension 4 of any such
series by the general symbol??F,, the appropriate symbol for the series whose_ generative AP,
is the nataral numbers is ¢ w' The latter are the only ones we shall make use of in what follows ;
but it is a helpful prefictency exercise to explore the properties of others. With the help of
¥ig.7, the student ghﬁﬁld be able to establish by induction and to check the more general formula
of which (if) aboyeds a particular case :
S

\\ §F,L=w‘;;$-(5—2-”*l-+d)-

When s —= 3, this reduces to (ii), viz. :
(n +d — 2)&-1

‘F, = i .(n—134d)
_(m+d—1)®
N d! ’
The general property of all such series s given by
P e e I SR I

¥=1



22

The families of
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by 3F, do not exhaust number series we can represent
in Figs. 1and 5.  Another family is the central polygona

K AND CHESSBOARD

plane figurate numbers represented by 2F, and of solid figures represented

by regular patterns of the sort shown
s (Figs. 8, 9 and 10) whose formula is

I+s(n—1)+5.2F,_, =P, =1 +3s. ..
The octagonals (s — 8) of this type are the squares of the odd numbers
1,9,25 49,81, . . .
The corresponding 3-dimensional series (pyramid of 9 faces) is

Pa=1, 149, 1494925 149425149 .
5

=1, i0, 35, 84, ...
. . O\
The summation formula is
# Fmy ¢ ‘\'
3 ¢\
sPﬁ=ZiPw=n+sng—l 2NN ¢
1 - \W/
Yt x=1 A
2 &N
= n + 5 z 3F‘U o \ b
A o=m 4 .\'
Ty S
I T

7 #%4
= :-3—1(3112 —§ -+ 6)\ -
Check : Py = §(B.16 — 8 - 6) = 84 (4 aboge)

. A : )
BRI S T Y
I 4 i»l% 9 31
\’\ N/
N - -
BT
A X o iy
I ) ,\' ® 5 2 25 )
4 "\ &/
\’§m.. . "
A L HY [
Y wow '5 . altess, Y’ ::0:.::
2\ "..\ ' * .':...:. ..:.::::::: .:.:::..o:::
\ 3} ! & & 3] g
LL1T]
. o .O:I":O DS
L1 I..:..'. ..:::::::::..
i 7 i Kyl

o @ {5”‘:5’"‘# ‘{f.:g j’
t ® 25 49 "5.’"

F1c, 8, ‘The Centra] Palygonal Series,
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The visual representations of figurate numbers of this type in 2 dimensions are reducible
to rows and triangles (Figs. 8-9), and those of 3-dimensional series to rows, triangles and tetra-
hedra. Hence the algebraic expressions are deducible from the formule for triangular and
tetrahedral numbers. Such expressions are also obtainable by recourse to the general method
dealt with in 4.03 below. The accompanying charts exhibit the visual approach which made

possible exploration of the properties of a large class of number series before the introduction of
symbolic algebra ¥¥ax

EXERCISE 1.02

1. Write down the first 12 triangular numbers, the tetrahedral numbers and the.4th-dimensional
numbers of the same class. \

O\
2. Find the numerical values of : N\ e
3Fu ;s P 3P §Fss & §F;. 4":‘" ¥
3. Write down the first 10 members of the series m\ -
iF.; 3y §F.; 3F,; G5
F,; . SR, IF,08F,.
.Q. x\\‘
4.* Show that F.=1 3 s (3F,).
x=1’:. :..
5.* Show that A\
r=F F=H "‘" . == lx-ﬂ 111-” .
éFﬂ_%(gFﬂ):%z x3+ % z&& an_%(an):_lizoqu—'_Ezoxs‘*“ﬁi ox
. =D\ '} r= X Fo
Foexi) __ﬂ\ﬁ'
8.* By (vii) and (ix) show tHabif & >2
N :41)
O (n—+ 1)tk
m\,/ w2 =R
2w Frr o R

A\ .
7.%  Obtain an expression involving one unknown (n) alone for

:..\ < =t r=n

r=n r=1mn

@\ . ]

Q Se T 3t 3
) g} r=10 x=10

=

8. Tind a formula for

Zoni— | F=n—1] wmn—1
. 4

2w 2o# 2t

=1 r=1 x=1

9. Find the numerical values of
Py iRy H#H 305

10. Show that

t=n

> (@n+1)2=148.3F,
x=0 - N . BT
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ooy 2 H
$e R =1-30.)+3 5,

[ =€) L )
Sespcisesines

R -1+50.0+5F,

seewes
Ca)
OO
O
0 00
X I
992,20
*0%e50%
OO
%%%o
L ' " PR
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i1. TFind an expression for
(@) §Fntrys (B) Fyury

I12. Find the numerical values of

r= 10 =12 =11 x=alf) x= 12 r=]]
@2 $Fe; B s 2 Fa; @)Y 3F; (93 iR () X iF.
e 5 ¥=5 =3 =4 r=48 ¥=7
1%, Evaluate
A=8 x5=7 ¥ =10
() 2 8P.s (i) 3 3P (i) 3 2P
L =2 =35
"\
14.% Devise a formula for O\
x=b =t \'\
(a) Z gFﬂ—zrc-l-l; (b) Z fFﬂ‘}‘Sw—S‘ N
Fe=g 2= N

I& Repeat No. 5 of Fx. 1.01 with due regard to the meaning"af\EF,, when &> 3.

K7

103 Pascavr’s TRIMANGLE

We may set out the serjes generated succes8ively by the units, natural numbers and tri-
angular numbers of 1.02 in successive columns! as in Fig. 11, In such an arrangement there is
a row of terms corresponding to those of each goluma. By shiding successive columns downwards
through 1, 2, 3, . . . etc., rows we getdhe arrangement (Fig. 12) known as Pascal’s triangle,
though it dates at least from the time/of\Omar Khayyém. In this arrangement the 7th row has
{r <~ 1) terms whose rank we label fx0m 0 to ¢, so that the cth column starts at the end of the cth
row. N\

We shall label a Pascal yflmber 7., as the number in row 7 of column rank . By
reference to Figs. 11 and 12We see that

%; 1= F, = 0y gy =1=2F == 2 F,
iy =2 =1F, =1Fp 44, =2 ='F, = *F,
20 =1 =2F, =, 5., =1="F, = "2k,
=V="CF = F g, =1=3F =3,

<\‘:" 3ip =
=3 =1F; = F;_;4, =3 =2, =3 1F,,

3(1} 3
3(2; =3 = 2F, = By 911 =3 =1F; = ¥y,
3f3‘1 = I = 3F1 = 3F3_3+1 :1 = an = 3---3};‘3+1
In general, the rule is
Yo ™= Frprr 0oF 1o =""Fery

From (i) in 1.02
et e 1o
!

ch‘-—G‘f’I ==

pies

Eh
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r ¢
Fc = Fm

ROW
{F}
°F, O|:~2 Of‘é OI—; °F, °F,
O { I I ! ! !
°F, 'F, °F, °F, °F, °F,
'F ', 'R, ' 'R '
| i 2 R} 4 5 A
Rl R R OCR| w] B
L & A K - "B
2 [ 3 6 [0} 15 ™ 21
°F, 'F °F F % °F,
3F; 3F2 3F3 JF‘; 3F§\ 3Fé
3 I 4 10 20 N 35 56
°F, 28 I . °F,
4FI 4F2 4F3 4E:t. } 4F5 4|-_-6
4 3 5 15 43 3s 70 126
Fe 'Fs °Fa , F, °Fs
5, °F, B R °F, °F,
5 ! 6 e 56 126 252
°F, W °F, °F *Fe °F
1 a2 3 4 5 6 COLUMN

£ <)
FIG..l{.;. "Two ways of symbeolising the Figurate Numbers of Fig, 1.

From (iv) in l{Q’I\

rio) rl
O P I T
. _
O e clir — o
. 7! rie)
- ffc) ==

c!(?’ -_— r:‘)! cl
By (viii) and (i1} in 1.01 we also have

Ny =1 = Fin
We may arrive at (i) by ancther route, since
Floy = T_-chél
_(e-+1 —4—;\ru—ic——l)"'—"""r
(r — ey
ypir—e)

T o

(1)

(i)
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RO}W
r
( Our"F,

O 1
O<o>=OFn
boy™ 'F, by =CF;

! 1 1 e
boy = F2 lgy = 1F1 Fc+1 =T, = ‘F, c+1
20=F |2y = 'F, 20 =F;

2 i 2 1 N
20=F |2, = 'F,| 2= 7F, O\
3e="F, 3 =°F; 3 ="F; | 35, =CF, O

3 i 3 3 1
30~ ) 3,= 'F| 3= F| 35=F Ry
40=°F, | 4y =F, | 4= Fl4a=F 44,="F :

4 | 1 4 6 4 <’1.\\'
4= Fsl 4y = F | 4= F [ 4= F}4= °F,
50="F | S0 =" | 50="F | 5o="6 T5¢4)= 'Fs | 50=F

5 1 5 o | 90 | s 1
50%F, |50 = 'K |50= H15%= | 5w= K| 5u=F
6= °F, | 60 ="F, 6(2}=’ ?{’} 6= "F; | 6= Fs | 65= 'F; | 66="F

6 i 6 \%" 20 15 6 i
6= °F, 60 = 'F '6i'21 Fs | 6= | 6w="F 6= o] b= °F,

© 2 2 3 a4 5 ¢ COUMW

Fig, 12, The d&ﬁvatmn of the Pascal Triangle and of the Formula for Pascal Numbers from the
Figurate Numbers of Fig. 11.

\ .
N r!

. Teey :(

r—r—cll{r—o)l
7l
Tdr— ot
EXERCISE 1.03

1. Make a table of values of fip forr =0tor = 10.

2. Write down the series defined by
]2{55: H 16(51 H 25[:@1'
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8. By direct multiplication find (¢ + &) for all values of 7 from O to 10 inclusive.

4. Tabulate the results of 3 and identify the nature of the numerical coeflicients by recaurse to
the results of 1.

5. Indicate the pattern of the general term 4, .&"¥ by appropriate symbols for the numerical
coefficient A4, and the powers /, m in the expansion of Ex. 3 above.

104 Tar BixomiaL THEOREM

Pascal’s numbers provide the clue to a general rule for expanding an expression of the form
(b 4 a)" as a power series, i.e. in ascending and descending powers of 2 and b, By direct multi-
plication we obtain the following resuits :

(b+a) =1 R\,
(b+ap=5b+a ,
(b + a)? =B 4 2ab + a® W)

(b -+ a)8 == b® |- 3b2a + 3ba® + a3 RS

(b - a)* == b* -+ 4b3a + 6b%a® + 4bat et

(b -+ aff = B + 5bta + 10b%2 + 105%° - 5ba* + &,
ete., ete. \

By inspection, we recognise the coefficients of the above as Pascal’'s numbers ; and it 15
convenient to lay out the results in a schema likevthat of Pascal’s triangle, viz. :

Power (== rank of row) )
0 1.8%° )
1 1.5 1800 ¢
2 1.5%° 2.85@\) 1.5%
3 1.5 g 3.5 1.8
4 1. b‘;ao \ A 6.b%° 4.4 1.5%*
5 Lba®  ,0\J5.0 10.5%a* 10.8%° 5.0'a 1.8%
FTerm 0 O 1 2 3 4 5

{= rank of colu'h}ﬁ

Tt fs mm?é‘?’s" to recognise the pattern of the series by the general term of (b + a), vi2. !
N/ :
!
T TR
(r— ) «!
. ] ors'how t.hat this expre_ssion for the term involving the xth power of  in the expansion of
( 11— a)f 1s valid for all positive integral values of 7, we assume that it is true for a particular
value of r as shown above. It then suffices to show that we get the correct expression for the

term involving ¢® in the expansion of (§ - q)*+!. i . pres :
(r + 1)y . @b+, P of (b 4 ay+7, if we substitute (7 + 1) for r in (i) above, Le.

We first note that
&+ ey = (b + a)(b + ay.

The lt(?rm;:lvolving'a“ in the expansion of (5 + @)+ is therefore the sum of b times the term
nvolving a* and @ times the term involving ®= 1 in the expansion of (b + a). If we denote by

A, the coefficient of the general term of (b + a)*1, we may therefore write
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A, broerlge — p, Y at - a, Fla_p DT o+l go—1,
Ay =10 F ey
rl ¥l
Ao —2 GG L
Hir—a+ 1) rla
B T R Yy
¥l
2l (r —x+ 1)'&
rl(r + 1)
wl(r +1— x}! O
(r+ 1) O\
TGl -n O

Hence the general term of (b + @) +1is N

x+1-+x

(;_T“l,) bf+]_—.m a;-_, Q ~‘.,:\.\'“
xl(r4+1—a) v

29

This is the expression we get by substituting (r + 1) for #/ in\(‘i) above. The complete expan-
S\

slon is most easy to memorise in the form

P
N\

. () 71 2} O pm ‘ 0
(- a)y e Groa fqphia fgr b AR bt e
Abernatively, and more briefly : N\ )
g == ?’
- \ -2 g,
(& + a)m}\ Eﬂ x)! b-* a
From (i) it follows that \ )
) TN SEU yn
2r=(1 :!.—\'*})":1 -{-r-f~2—!T—!*|—'- - +q

r=r
=Z fim

\
.2
o%" x=0 rmr_1
SN o _1_2% and 221 —1)= > 1y

7\ .
o\ =1 ¥=1

EXERCISE 104

(i)

(iii)

1. Write out the numerical values of the expansion (} + })" and (} + §)7 for all values of  from

0 to 12 inclusive.

2. Write out the numerical values of

G—3% G+d0 G+H% G+

3. Find the sum of the first four terms and the three mid-terms of

G-+
4. Expand (0-35 + 0-85)° and (0-65 - 0-35)%.
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B. Find the rth term of

(x4 afl® forr = 10; (¥ —a)forr =7,
(14 2a)% forr =35 (3x — 1) for r = 10,

6. Find the middle (or two middle) terms of the expansions
AL - ¥ Oy\" /3m Zu\is
(3p—§) i (13u -+ 50, (—2-—5) ; (—5——4—3 .

7. Find the coefficient of

#in (x4 a)2%0; gSip (x —a)l®; 484y (u+ )%, sy (s + &2,

8. Calculate by binomial summation Q)
(LOLF; (1:8); (1050 (1-04), O\
8. Evaluate by the same method correct to 3 decimal places 5 O
(595 (395); (6997)%; (4-80),. Y
Hint—3.95 = (4 — 0-05). R

10.* ¥ y,, v.., and Ye—1 respectively stand for the ath¥ (x4 1)th and (x — Hth terms of
the expansion of the binomial (g 1+ p)", show that D"

*

y— x/’x\ .
Yogy ==—. x_‘r iy"‘
RS
Y1 _"pffi" | e

N

11.* In the symbolism of No. 5 in Ex.“I.Oé, what is the mean value of (a) the xth term and the
(x4 1)th; (d) the (x — 1)th and the athrterm ?

N\
12.* 'What is the difference beg%en (@) the xth and (4 1)th ; (&) the xth and (x — 1)th term;
and what is the proportionate er:&n{ involved in equating the two differences ?

13.* What is the differe’@éé between the mean values of (a} the xth and (x4 1)th term ; (8) the
ath and (x — 1)th term o{(g\_T 2
O\

(@ (1 + x)p~ 1 4 3o,
@) 0+ apret o+ 34 3 %)%2:1 _}_%x_éxz_

15. On the

; assumption that the binomial theorem is valid for fractional indices write down the
first six terms of :

@ VIta; &) VIt @ vi, @ VI,
* By the xth term we here signify the term involving p=, We

Bt (see p. 31). label the instial term of the binomial as the
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16. Compare the answers to 14 and 15 when & = 05 by extraction of the square toots of the
expressions involved or by logs.

17. On the assumption that the binomial theorem is valid for negative as well as positive indices,
fractional or integral, show that
1.3 1.3.

1 |
—_— — 2 — a1
Vitg = Lo+ aty 4.

X

a0,

3
b2
=]

18. What is the general term of the expression in 12 }

19. Find an infinite series for v/2 by expanding (14 1), Compare the result with the expansion
of {§ + )% Q)

20. Find an infinite series for V'§ by expanding (1 — 0:3)%, and ascertain whlether it s convergent.
NS °

Ny

105 THE VANISHING TRIANGLE »

: AN .
We shall now explore an operation {A) suggested by the build*p of figurate series as a means
of deriving an expression for a discrete function of x, if red%cib!e to a power series such as the
general formula of the tetrahedral numbers D
(x + 2)® o

31

MY x
Nt
The use of the term discrefe in this contextodalls for explanation. In everyday life, we use
numbers in two ways, for measurements which are necessarily approximate, and for enumeration
which is necessarily exact, if correct. Gorresponding to these two ways of applying numbers
to the real world are two classes of f,uﬁe}ions, both of which are illustrable by reference to the
statement that 2° is a function of 4 X\

(@) If the independent variable x can increase only by steps of one at a time, so that & must
be a whole number, the expresgioh 27 specifies successive terms of the series which we may write
alternatively as P\

1 \:"\.‘~ 2 4 8 16 . ..
20 (N o 2 28 2¢ ...

In what follows We shall represent a function of this sort by the symbol y, for the dependent
variable, In t'ikis}éase Y. = 2% and & is the rank of the term of the series so defined.
We may exhibit the relation thus :
Yy == 20 o1 o2 23 VA

Note.——Elementary text-books often label the initial term of a series as the term of rank 1.
This entails a change of the form of the function. If we put y, = 1 = 2° = 2!1, the general
ferm of the series defining the form of the function y,is 2°~'. How we represent the sum of
the first # terms of 4 series depends on what convention we use to label the rank of a term. If
we label the initial term as the term of rank 0, the first # terms are the terms _from Y010 Yu_y and
there are (n 4 1) terms in the range v, to v, inclusive. If we label the initial term as the term
of rank 1, the first # terms are the terms from 3, to ¥, inclusive. In.the Yo symbolism ust}d n
what follows, the general (xth) term of the G.P. whose common ratio is 7 is y,* and that of the
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AP. whose common difference is d is Yo + xd. In the alternative symbolism the corresponding
formulee are y;7*~1and y, - {x — 1)d. 'The corresponding operations of summation require
appropriate changes of the limits, e.g. :
’ Xom oy F=n—]
2 = 2,
:.VZI xgﬂ

(8} If a function of x may assume a value corresponding to any value of x fractional of
integral, rational or irrational, real or imaginary, we usually denote it as f(x) =y. Thus f(x) = 2=
may mean 1414 . .. when #=§; but y, = 2° has no meaning corresponding to x — .
Since y = f{x) has values corresponding to any value of x, we can represent it by a giaph on
which there is a point y corresponding to any such value. )

We cannot correctly represent the discrete function ¥e as a graph, since s corresponding
track is a series of points which lie equally spaced in the x-dimension of*the Cartesian grid,
Strictly speaking, the convention of visualising it as the staircase figurercatled a Mistogram is
open to the same objection. The reason for deing so will appear latery when we scek & method
for approximate summation of discrete functions, "G

When dealing with discrete functions with respect to which #i8'the rank of y,, the smallest
increment of x itself is Ax — 1. 'The corresponding incrémient of 3, when x increases to
1= (x+ Ax) is

AY;
Yet1 — Vg = ﬂy?":.\

For example, A2? = Qe+1 _ 9= _ 22 —1) =2, an‘(i’A:S’* =3+ 3 — 33 — 1) == 2.3,
Thus the increment of y, per unit increment of x4 the rate of change of y,, is
Ay, + A% Ay,

If a function f{x) is not discrete in thisSense, possible increments of x have no smallest limit,
and the rate of change of ¥ with respeetto x is the limiting ratio called its first differential co-
efficient denoted by the symbol O\

dy
ax =f(x).

AN/

&l - - ~‘\'” - - .
Lo derive Ay, the merement of the discrete function ¥. when x increases to (x |- 1) we

subtract y, from v, , ilﬁuccordance with the following procedure with respect to the series of
tetrahedral numbers dbﬁned by

) (lez)m

Since x stands for the rank of the term y,, in the above

© + 2)0 4 1)0 +0)

R
We may therefore set out the first six terms of the series as in the first twa lines below :
Yo M Y ¥ g Y,
0 : 1 4 16 2(;l 3§
(1 -0 -1 {10 —4) (20 —10) (35 — 20)
= =3 =6 =10 =15

Ayy Ay, Ay, Ay, Ay,
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We may apply this procedure successively as follows

0 1 4 10 20 35
1 3 6 10 15
2 3 4 S5
1 1 1
0 0
0

Frova the laws of formation of figurate series successive application of the operation denoted
by & necessarily generates a succession of zeros. Successive rows of the vanishing triangle, as
we muy call this arrangement, reveal in reverse order the process of successive summation
nerates the original series. 'The student should be able to satisfy him@&lf or herself
rumber of successive A operations which intervene before a row of zetes is the dimen-
sion (¢ f,\f the series, i.e. the highest power of x in the cxpanded form of; y,,\

When perform.mg the A operation successively, it is useful to ]abel Successive differences
apprepriately by an exponent which shows how many times we hava 0, repeat the operation of
subtraction, Thus

4 '\

‘:‘2}‘2" e Ay$+1 — Aym = (ya:+2 _' yw+1) - (yz+1 _yﬁ) \Y%
= Vore — 2Veiy + Yar A

A% = (DVass — AVea ) — (AVery — Aya) ':1\
== [(Yers — Yot o) — (Yare — Fer )] E(}*Hs Yer1) — {Yora _J’w)]
= Yotz — Wets + 3Var1 — Yo X%y

in conformity with this symhohbm We may; wntc Ay,, as Aly, justas x = &' ; and A%, =y,
signifies that we do not perform on y, the A {Jpcration i.e. subfraction from tis successor.

In general, Amtly, —Amy, L — ATy,
. A a:-l—,]i%Amyw + A'm+l 1
XN or

ﬁ".‘y; — Amyw_l + Am+1}’m—1°
. A%
Iy definition : {

Pp)
:"\}« Yar1 = Yu + A2

We may write this in. the form

:’\,’ y¢+1“—(1+A)y=
The oper\tor (1 - A) obeys the fundamental laws of arithmetic, as the following example
Hiustrates : Yotz = Vor1 T Darr = (1 + APara

= (¥o + Ays} + (B + A%,)
==y, + 248y, - Ay,
=(1-+2A 4+ A%y,
= (1 4 A)%a
Hence, if x ~ 0,
ye = (1 -+ A)%0
and, in general,

=S
=yu+xﬂyo+zﬁyo+ Ay ee o G)
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This expression is a very powerful instrument for detecting the law of formation of & nRunierieal
series, as illustrated below. The accompanying table which refers to the tetrahedral numbers
makes the connotation of all the symbols explicit, and exposes the arithmetical ratiovaje of the
formula itself,

Rank Term 1st Difference 2nd Difference drd Difference dth Diffevenes
0 Pu=0
Aly, =1
1 n=1 Ay, =2
Al 1= 3 AS g T 1
2 y2:4 A%y, =3 Aty i
Ay, =6 Adyy = 1 )
3 pm=10 Aty, =4 Nty
4’31 "3 = IO $3y2 = 1 a
4 y, =20 Ay, == 5 R \)
Aly, =15 .
5 3,35 Q

By reference to the foregoing table, it is possible to exhibit a, x’t\ry useful relation conncoting
any value of y, with the terms (y,, Aly,, Ay, ete.) in the uppermost diagonal. Lo muwie it
explicit as poss;lble, the followmg sequence shows the apﬁmprmte numerical mluca
when the series defined by v, is the tetrahedral numbem but the symbolic relations are, oi covrse,
valid 1n their own right:

Y5 =Y.+ Aly, "f"{:’
=20 1 15 )
= (y; + Alyy) + (Nys + A%} L
— 3y + 2Ay, + Aly :“,\
— 10 +2010) +5 \’\‘ -

= (32 + Alyy) 4 2(AL 2 :1* APy} + (A%, + Alyy)

= ya -+ BMy, + 3A2, 0 Asy,

=4 4 3(6) 4+ 3(42& 1

= (3 + Alyl) %\3 (Ayy + A%yp) + 3(A%y; 4 Ayy) -+ (A%, + Aty

= 3 1 48150 $BA%y, 4 4A7y, + Ady,
=1 +A(3) +8(3) + 4(1) + 0

= (e By) + HAig, 4 )+ B8 A + A %) - (A - )
= Yo + SAy, 4 10A%y, 4 10A3y, L 5Ay, + Ay,

=0 + 5(1) L 10(2) + 10(1) - 5(0) 4 0 = 35

The expression underlined illustrates the general'rule (i) stated above :

= ya - Ay -+ 2 A%y I+ XA Yo - - -

F=F ir)

—-memn or Z—Ay‘,. S €
r=0 r=d '
By applying (i) or (ii) we can derive a formula for any series of numbers which lead to 2 vanishing

triangle. As an illustration of its usc, let us consuier the series which represents the sum of
the cubes of the first x natural numberq viz.
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ERank (x)—

2 3 4 5

0 (03_|_‘13) (03+13_f_23) (03+13+23_[_33) (03+13_|_23_i_33_|;‘_48) (03+13T23+33+43+53)
9 36 100 225

"'he appropriate vanishing triangle is

0 1 9 36 100 225
i 8 27 64 123
7 19 37 61 :
12 18 24
6 6
0 ~N

Whence we find _ \
Fo=03 Ay =15 A%y ==7; Aty, = 12; Aty =6; Asyh 2D,
1By substitution in (i) we now have ,‘.‘}"\

S

n ?x(xzu 1 i 12x(x — 1)(x — 2) " 6x€x’~" I)(x — 2)}{x — 3)

6 N 24
= &[4% -+ Ma(x — 1) + 8x(x — 1){x — L) x(x — D)(x — 2)(x — 3)]
_xg(x—}-l)z :,t.‘
T4 o ¢

Hate—This result checks itself, since it is the$tuare of #x(x + 1}, the general formula for
the ath triangular number (p. 16). ~Slccessive values of Y. are in fact the squares of
the triangular numbers, vsz. : 02\~1"2, 32672 108, 152, | | | '

The relation defined by (1) is_dtigto Gregory, a seventeenth century Scots mathematician
who communicated it to Newton{ Yt suggested the analogous formula discovered later by
another Scots mathematician, €6lin Maclaurin.  If we denote the value y = f(«) assumes when
&% — 0 by f(0), the value dy/dw>="f(x) assumes when x = 0 by fY0), the value d%/dx? assumes
when ¥ = 0 by f2(0) an%ﬁ'\én :

Q)

¥ x®
Y=SO) + PO+ SO+ O . L G
AN ! !

In Maclaurind series simple powers of ¥ rcplace factorial exponents of the coefficients in
the Gregory-Newton formula. It is an interesting fact that many expressions involving the
operator A are analogous to corresponding expressions involving the operator d/dx, if we replace
simple powers by factorial indices. Consider, for example, the expression

Ve = x

=ax —Dx—2). .. (x—r+2x—7r-+ 1
={x — 7 L 1)xtr-1,

= (x -+ I)Ir]
=@+xx—-1)...(x—r+2

— (x + I)x(r‘-ll’

S Yesi — Ve =Dy = (x - I)x{f_“ - (x — 7+ =ty
oAy, = rxlrD . . . . .

y;c+1

(iv)
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This recalls the familiar expression for the differential coefficient of Y= X, v
dy
dx
When y, = (m + x)* the same procedure shows that

Ay, = r(m 4 x)-1 . . . . . - (W)
S0 A%, = r(r — 1)(m 4 x)ir- D
= rB(m + x)t-2),

= rar1,

and, in general,
ARy, = 7™ m + g)ir-m) . . . . - (v

We shall use this result below. ~

It is sometimes convenient to express the xth term of a series in terms of\the term of unit
rank. We then have O\
4y =1 + Auy = (1 + A O
uy ==y + Auy = (1 + A, = (1 + AYouy, o3
and, in general, e \ ¢

u, = (1 + Ay~ 1, )
—1)(x —2 — D@ 2)(x — 3 .
= -+ (x — 1)Aw, + H——#——)Agul + (x ngx 7] ) )A3:{1, ete. . {vii)
EXERCISE (0§
1. Find formule for the following series : :’."' 2
(@ 0,1,3,86, 10, 15. AN 0,1, 12 33, 64, 105.
() 0,2,6,12,20,80, () 0, 1, 6, 18, 40, 75.
) 0,2,8,18,32,50. (k) 1, 1, 5, 13, 25, 41,
(@) 0,1, 8, 27, 64,125, O (f) 4,1, 12, 37, 76, 129.
(¢) 0, 5, 24, 57, 104, 165, ®) 0,1, 4, 10, 20, 35,

2.* Find formule for the sum}sﬂdf the squares, cubes, 4th powers and sth powers of the natural
numbers and check by referencexto’ Nos: 4-6 of Ex. 1.02,
~G

3. Addan additionz;l\'%"ﬁ to each of the following series

(a) 0,55 20, 45, 80, 125. (f) 0, 1, 12, 33, 64, 105.
40,9, 28, 57, 96, 145 (2) 1, 12, 37, 76, 129.
)0, 1, 4,9, 16, 25. (%) 2, 14, 36, 68, 110.
(d) 8, 13, 18, 23, 28, (7) 0,1, 7, 25, 65, 140,
(e) 1, 6, 18, 40, 75. (k) 0, 1, 8, 21, 40, 65.

4. Write down the values of
Axt® s Axldl s Agio): Agi-a,
5. Find a formula for Ae® and show that A2* — 9=,
8. Show that
Y E RRE YR )

2”=1+x-[——2!—+—3T+m-, ete.,
() by expanding (1 + 1)7; (6) by the operation (1 + A)2e.
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%. Show that ,
Alog & = log (I + E)

§. By recourse to the formule for sin (4 + B) and cos {4 + B) find expressions for A sin &
and A cos a.

8. Find expressions for

(@) A3x (1 — #2). () As.
{b) Ala + bx). (8) A(x + a)~>.

(©) Ada + ). (5) A t il

(d) Aat. (7) A‘ifm}g. 8
() Alog (a + bx). (k) Atanx. PR N,

L 4 N
P

N
106 Tur BinoMIaAL EXPANSION FOR FACT{).\RIAL PowERs*®

If ¢ and b are both integers we may expand (b 4+ @) in 4 form analogous to the power
scries for (& + @) of which (ii) in 1.04 defines the general termh” We can show that this is true
for particular positive integral values of r by direct multiPEca}ion. Thus, if r =3, :
B3 L 3biBg 4 BB Wa® L gi¥) = p(b — 1)(b — 2) + 3ab(b— 1) + 3ba(a — 1) + a{a — 1)(a — 2)
= (b® — 3b% -+ 2b) + (3ab® — 3ab) + (8a?b — 3ab) + (a® — 3a® + 24)
= (b° + 3b%a + 3ba® + a%) — 3(b% e + a*) + 2(b 1 a)
= (& 4 a)® —3(b + @) + 2(b )"
= (& + a){(b -+ a)* — 3(b + a)1-2]
— 5+ @b +a— )b +d>2)
= (b + a)3. 2\
The general term of the expansion(d + a)'" is :
< r! .
L)) T hlr—E)gl) . . . . . .
"\\ y wl(r — x)!b “ ()
A proof of the theo%in'for positive integral values of  and for integral values of » and a is
abtainable from the ’G;;\egory-Newton expansion (i) of 1.05. Consider the series whose general

term is ”\} ) Yo = (b + a)tn.

Successive térms of this series obtained by putting @ =0, 1, 2, etc., are
B, (B 10, (B4-2)1, . . . etc
By (v} and (vi) in 1.05

Ay, = 1(b + a)*n,
Ay, = r(r — D@ + @)= =36 + a)'m 2.

Axya — f{”](b + a)(r—zl.
Hence we have
‘ﬁzyo = y@)ptr—&} 7 Yo == biri,

* Vandermonde’s Theorem.
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In accordance with (i) in 1.05

. at?
Ya = Yo + aly, + 727&2}70 . .. cte,
' 2}
So Ve == b fpblr-1g %T-b{f—ziam ... ete

Thus the general term of the expansion ¥, = (b - a)'") is as given by (i) above :

ri®) rl

—_pir=@igiz) _____5[1'—9:}&{1').
x! “ xr — x)!
That is to say,
A=r ?,r
b ) — —  plr—ziyr) . L\ . . fii
(6+a) ,go xl(r — x)! (i)
(\D
An important peculiarity of the expansion (b - a)*" arises whenov s greatec than b
andfor a. By definition x(*) — *Mx—1)x—2)...3.2.1: and REID = wlx — 1)y —- 2)

.. .83.2.1.0=0. In general x" =0, if > x. Hence (b —|—a‘)"""'vanishes if 72 (2 | b)
and all terms in the power series corresponding to (5 4 @)™ Vanish if the index () of
a exceeds q, or that of b exceeds 5. Consider the expansiong s

(2 + 3)% = 5 — 50
By (i} above O

@243 =200 45 g3 1 19 2f313t23;,41:1’6 L2300 L 5 9 g . gw),

In every term except one, namely 10 . 2‘”3{?3’,&1&6 index of 2 exceeds 2 or the index of 3
exceeds 3. Accordingly, all terms vanish except

10,2939 =10.24423.2.1=5.4.3.2.1 5

The number of vanishing terms "Ii\ia’ﬁypergeometric series, i.e. in a series involving factorial
powers, is of some interest in conection with the calculus of choice, and is therefore worthy of
examination. We shall use the Syibol 28, for the number of terms in the power series of the
expansion (b - @) and 25,,, for the number of residual terms, i.e. terms which do not vanish,
in that of (b + a)yn, We as;c;u\me that &, @, and 7 are whole numbers. Since we label the terms
of the binomial from ( 0 inclusive, 25, — (r +1).

- Bince (b 4- ) 21 =+ a)® and (b + a)» = (b +a) = (b + o),
N\ J St = 28, and 2 = 28,

For values of » exceeding 0 and 1, we have to distinguish four cases :

Case 1. When 7 exceeds neither & nor e (r < b or a), no terms of (b 4 a)") vanish, so
By =28, = (r 1).

Case 2. When 7 exceeds bonly (b <7< a) every term vanishes if the exponent of &
i « - . &% inclusive. Hence

(b +a) = (r + gy,

¥ Since (@ + 5 — €)=r and r > a{r+b—5> 7, and .since r > b, so that (2r — €) is also greater than r.
Hence (r~c)>0,sothatr>c. S .
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For the reason stated with respect to the preceding case, this expression has (1 + ¢} residual
terms, e, 28, =1 4 ¢
Ay =14-b+a—r
if ¥ = {& + a) so that ¢ = 0, there is only one residual term, @iz.: 7,,d®'a'® as illustrated
by the expansion {2 4 3)© above.
Case 4. When 7 exceeds the sum of & and a {r > & + a), the expression reduces to zero,
ie. 28, =0

EXERCISE 1.06
i. Expand (2 + 3)‘.'“ i (14 3p; (34 5)3,
(13 + 39)t® (26 4 26)¢ A
nd 7(52)(4) and -—-—-—(52)I4)~-—— . ' \' \..>

Ny

%. Expa

&% If y, and ¥, are respectively the xth and (x - 1)th terms of t}:m’t;fxpansion (s + )", show
that 4D
L (s—a)r—a) o
y&t+1_(x+1)(f___r+x+l)\-?}x-
4,* Find a similar expression for y,_,. '\ !

X}

8,* Find an expression for Ay, and for Ay,_,, also the'mean value of the two differences.

& Expand (4 4 6)'9, and cite the numerical® ;&élile of each term.

7. What terms vanish in the expansion of B+ 5@
o~
8. How many residual terms are.\th\érc’ in the expansion of (3 - 5)7 ?

8. Dectermine the number of.fesidual and vanishing terms in

AN
’\,(2_‘_ 4)[5} ; (4 + 5}(8] ; (4 + 6)(10!_

\S
10. If b, ¢, r are aLtpositive integers, show that

(E""’r‘ eyt = #l [Byy + by todir-n - - Cir-1yd + tnh
and hence that ~\J

v

-+ o) %

L = =|’,‘ 6 —}r
?‘[(?'—b—t‘)! = (@) (r=x}

107 "TuHE MULTINOMIAL THEOREM

The binomial theorem exposes the law for deriving a power series corresponding to the
repeated multiplication of an expression involving the sum of two basic terms, viz.: b and a
in (b + a)". 'To expand an expression which contains three basic terms we may proceed as

follows in conformity with (i) of 1.04
(ct+dbtay=(t+bh+a)y N
t2)
=c¢ +r.c7Yb+a) +32—!c"2(b +a)? + 23! b +aP ...+ b+ arn
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The general term of this binomial is
@)

_"':-x—!-{."_ x(b -+ Q)” . . . . . . (1)
If we expand the factor within the brackets we get
X PREY
¥+ xb-1qg 4 E'—bz“ g2 §Tb$“3a3. . .+ a,
The general term of this, i.e. the pattern to which all terms conform, is

e )

. N . : .
The general pattern to which the terms of the completely expanded trimpmial conferm is
obtainable by substitution of (11} and (3), wis, : )

oA\
@) () I 1 S\
f__ - x b= mam & X BT 2 e
e A = e ey,
x! ! ®lr — ) mlx — )l N

If we denote (r — x) by & and (x —m)by L k+14m =mﬁd the above becomes
7! ’ ..
- tagm ) i
kl Il m! cta o ’ ) ' - ()

Similarly we may write {d ¢ + b - a)" in ,tht':'}orm (d4+c+b —f—_a)’” of which, by
appropriate change of symbols, the general term isy W
7! N 7!
! b 't'sz-_‘—'“—jk[m- . - . v
A —ete + +,f‘:). AR Tt )
The same pattern is generally applicable to the expansion of an expression involving any
numhe:r of. bflsic terms, if (§ 4- +IKM ... Y=r For subsequent treatment of the theory
of choice it is useful to recognise how many terms the expansion of an expression such as
d+c+8b+ a)" contains. Thig depends both on the number of dasic terms involved and
on the value of 7. We shall hereldenote the number of terms jn the expansion to the power 7 by
the general sy.mbol A whighis £, for a binomial, 35, for a trinomial, etc. Thus the number
of terms 38, in the expa\ﬁ;gib'n of {@ + b -+ )2 is six, as is evident by counting the items on
the right below : &\
ol b 6)2 = g2 g + €2 +2ab + 2ac - Qb
Similarly, 48, s{‘};ﬁ from the identity

(a+b+f-‘+d)2=a2+62+62+d2+2ab+2ac+2ad—i-26c+26d—+-2cd.

We may tabulate such resuits as follows :

—_—

| - . |
Power » ‘ 15, 5, i3, 5, .
_— — ]
0 | ! 1 1 X 1
1 : 1 2 3 4 &
2 ’ 1 3 ] 10 15
3 | 1 4 10 20 35
4 i 1 5 15 35 70
| .. ..
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The pumbers in the rows and columns are familiar figurate series. On reading successive figures
in the columin headed *S,, we see that this is also the series 1F,,,, e.g. 25, =5 = 1F.. By
inspection of other columns, we also see that

88, =18 = 2Fy; 4§, =20 == 3F,; 38,=70 = 4F,, etc.,

and, in general,
—_ =1 —
nS, = m1F  ,="*F

Hence, from (ii) in 1.02

1 +m—1 -1

=S,

r (m— 1)

_(r+m—1)mn
= p— . . . N - (v}

In accordance with {iii} in 1.02 we may write this in the alternative fofro
e\
i — ! 1 J— | N

e (r +m— 1) _{r+m -1t . i)

-

m—r+1—1  rim— DICS

& formal derivation of (v) and (vi) follows from the rule deﬁ‘n}d by (1} and (iv) in 1.02. If
we expand (¢ + & -+ a)" in two stages as above, we first obtaigNr + 1) terms of the type

F T ‘:\\'
T ¢ (b + a) L&

3 X .x
In the expansion of (5 + a)° there are likewise (% -}, .e. LF, ), terms.  The total number of
terms of the complete expansion is the sum of all such expressions over the range x =0 to

x = r inclusive, i.e. N
Xy y?;""i
RN, 1 — 2 — 31
SS,.EZI &+l o Z Fy_ Ff-}‘l_ F!‘-f—l‘
2=0 A Wv=1

I we now repeat the same pi)ggsé of successive expansion on {d+c+b+a)y we first

get (7 -~ 1) terms of the form 7,3@~* (¢ + & + ay. 'The expansion of (¢ + b -+ c?)' yields as

above ¢F ., terms, and the total’ number of terms in the complete expansion is therefore
3 :

given by

N

(= y=ril .
Q:ﬂz *F, = z Fy = %Fr 1= 7 Wy
‘\'\ x=10 ye=1

We can continue ;ﬂ‘i.iSwpI‘OCCSS indefinitely, so that in general
m\ N
\/ S, = "W,

Example—How many terms has the expansion {¢ 46 -+ a)t?
(vi) above, so that (r +-m — 1) =6 and (m — 1) =2,

6!
' %$P::384::gﬁﬂ==15.

Here m=3 and r=4 in

The powers involved are :
at, bt ¢t . . .
a%h, a’c, b*a, b, c*a, ¢*b .
ath?, aic?, b%?
a2be, ab’c, abct

almmmw

Total
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In connection with the theory of choice, it is also instructive to know the sum of the co-
efficients. For the binomial, we have as in (iii} of 1.04,

s =1y =2

xl(r — x)
For the multinomial expansion, the corresponding expression is
7l
2o =0 +14+1+. .y
wlola! ..

Fa+141. .. ) = m, Le. if there are m basic terma,
(I +1+1.. I = me,

. Q
R zu! Tl 'zm . .'\:\'. . o {vii)
O
EXERCISE o7 N
1. Expand: K¢
(P+qg+7r% (24 3023
2. Give the terms of the expansion {3 + } 4 13 *\\\

3. Find the numerical valyues of successive terms n:f; v
G+ 350
4. Compare the results of expanding terﬁfbjr term

(@ (3 4B and (3434 g
@) GDD* and G+ 1+ 3
<K
5. Find what term of the expansion of the following has the highest numerical value :
NG+ 1+95 G+ 3+ 1
N\

'"\.l.

108 Twug MBLTINOMIAL ExPaNsION IN FacrtoRrRiaL PowEks

If r,a b ¢ ett{,:\fire all positive integers it is possible to expand (2 + & -L ¢ +d .. )" as
a series analopéus to the expansion of (@b +cL d . .)*. The binomial expansion of
(@ 4 b)! conforms to the same pattern as that of (g - ) except in so far as factorial powers
replace ordinary exponents. Hence the method of expansion by successive binomialisation
employed in 1.07 is applicable with a comparable result, e.g, :
(@a-+b+c+d. .. ){”~—=(a—]—b+c—[—d. -

= r!

=> e por areb Ledd. ., yo,
Pt !

Br=(m+11p +4 ... ), the general term of the complete expansion is

_ m}_l,j'___&a(wg,mcmdm C . ) ] . ()



FIGURATE NUMBERS AND FUNDAMENTAL APPROXIMATIONS 43

xxFok Tormally, the number of terms in the expansion (¢ + 5 +¢ . . )t is the same as
the number of terms in the expansion (¢ +— & +¢ . . .)*; but any term of the form exhibited
in (i} witl be equal to zero if m>a or I>>b or k>, etc. (see p. 38). The greatest possible
values of §, &, [, m are respectively 4, ¢, b, a Ir>(@+b4c+d...) al terms
of the expansionvanish. Ifr=(a+b+c+d.. ) itfollowsthat(m + I+ k+j...)=
(@ +5+c-+d...) Asstated any term will vanish if § > d and it must also vanish if j < d
because this is then possible only if 2 > ¢ or I>>b or m>a. Hence j and d must be equal, if
the term s a whole does not vanish ; and by the same token & = ¢, [ = b, m == g, s0 that there

is only onc residual term when r ={a b ¢ +d . . ), viz.:
vl

() fib) o) Jtd)y — pl il
a!b!c!d!a heipinngd ¥l . . ..\ . 7 {ii)

Exmmple—(2 -3 4+ 4)® =90 =0| = 212:4!2‘21 3@ 4@, O\

NS *
In 107 we have used the symbol ™S, for the number of terms‘ixi;‘f"ne complete expansion
(@+&--c ...y in which the number of basic terms (a, 5, ¢, eté) s m. For the binomial

expansion with only two basic terms we write this 25, and employ S, in 1.06 for the number of
restdizcl terras in the expansion (a + b)), For the number ef\résidual terms in the expansion
{a+ & --c .. )" with m basic terms we accordingly use thesymbol ™S,,. To label 2 residual
term of the form exhibited in (i) it suffices to refer to theMfactor '™ d®c*1d® . . which we
may here eall the efficient in contradistinction to the 2qefficient

R

I N
n{!fl@ )
A consideration of the following cas€s will indicate how it is possible to evaluate ™S,,.

Case 3. When r =0 or 1 and whegi?.}ioes not exceed any one of the b_atsi.c terms, no terms of
the expansion itself vanish, so that™S, = ™S,,. In accordance with {vi) in 1.07, we then put

" o+ m— 1) (r + m — )=~ . . i
Sf{?ﬁ“ w1 T @m—Dl (i)
Example.—The m)«\x@"t}e;f of residual terms in (4 +7 + 9)1* is
S a0 65y
a \Y4 21 2

Case 2. When r exceeds only.one basic term, here denoted a4, we pr O_CEEd as follows. We
first note that the total number of terms including those that vanish is obtame?ble by sum-
mation of the numbers in the cxpansion of the second fzﬂor_oi; all efficients of the
form a™btct+d .. Blans obtained by expanding (@ +bdc+d. . ) The _factor
(b +c=d...)r—= contains (m — 1) basic terms. We may therefore denote the operation by

y=r

L=y
— __ m—1
mS(ﬂ — z m—1§ = z Sg.
£=0 y=0

Now all efficients of the form ™ (8 +¢ 4 d . . )i v_vill. vanish in the range # >a. Thus
the residual terms will be those in which (r — %) =y lie in the range y =7 to y = (r — a)
corresponding to x =0 to x = a. .

*h#k Omit on first reading.
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y=r pomr

mS[ﬂ: z m—lS‘u: z e 2 A
y=(r—a) y=(r—a)
p=lr+1)
— z m—sz
P-{r—a)+1} ( }
P=iri1 p=fr—a
= z m—sz__ Z m_ng
=1 =1
=T = Gy
Y+m—g-—2)m-n
:me___(_—r-__.._____,)_‘_ i . . . (V)
(m — 1)]

Example—The number of residual terms in the expansion of (2+8 +740) Wi given by

(444 — 1~y @+d4—-2-21v 765 4.3..35_31
¢ —-n - 4 -1 S 8.2.1 3@t vt

In this case the efficients of the four vanishing terms are : 2@45%03 7,28 9 and gtu,
Case3. If r exceeds each of two out of m basic terms, her¢ {denoted g and b, the value of
™S 15 as before obtainable by summation of the residud\erms of the expansion of each
expression of the form (+c-Hd.. )% in the rangeyy =r to y == (r — 4) inclusive.
To evaluate the sum we have to distinguish between t 0 {Possibilitics :

) K r>(a+ b), so that (r —a)>5 and y herefore exceeds throughout the range
7 to (r — a), we can make use of the foregoing formwla for the residual terms of an expansion
involving only one basic term (in this expressioib) less than y itself. Since the expression
itself contains (m — 1} basic terms we write inl2ecordance with (iv) -

_ ™ ISm "‘:..m‘»aFu+1 — me E.T
The required sum is K
Y=y 'io.t
*Styy = Z "8 \ \\
Y={r—g) L )
yay v &9
= 2 m y+1—,32 T Ly
Y=y —a) CA=r—ua)
Pm=ral (N p=r—sp
A e - S )
P=rad4) ‘i’. p=r—a-—p
= mt :jii%’m-kp;—a‘—‘m‘¥ﬁ;—b‘+'m_¥P;—a—a—1
ﬂ_msx_‘(r—fnm—-a—-Z)‘m—” (r-tm— b —2)m-un
(m — 1l {m — 1)

(r+m—a—p — 3)tm-1
(m — 1)
Example—The number of residual terms of (2 + 3 +6)® is given by
6 +3— HE 613 -2 —2)% (6+3
2! ! S

3—-9® (64+3-2_3_3m
21 o Tt

21 21
=28 —10—6 + 0 = 12.
(W) Ifr < (a + b), so that b > {r — a) not all expressions of the form b+ct+d.. )m

will contain a term It:SS tha.n ¥ itself.  We can therefore divide the range into two parts : from
y=b+tlto ¥ = r Inclusive with m~ 1S residual terms in the expansion of each expression

+ (vi)
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throughout the range; from y = (b — a) to y = b with "~ 15, residual terms in the expansion
of expreseions therein.  Consequently, we now put

y=1 =
n8 ., = z mo1g z m-1g
y={b+1) s (r—a)
y=r y=r y=h
= Z PR — z Ay + z ! DV
y=8+1 y=a+1 y=rt—a
y=r y=r
A
y=r—a yamb4+1
p=r+i1 p=r—1t
e Z motg z m—2f
p= —a+1 p=1 : o

A P R P o .
(r+m—a—2)"2  (r+m—b—28HV
(m — 1) (m —..1‘}!

<

— m3, ~ (vii)

We thus drop out the last term of (vi) when r < -{a + 5).
Eaop !’P —The number of residual terms of the expansmﬁ‘ Z‘i +5+6F+7)is

E+a—1)® (B+4—4—2) (6—1—4?5-2)‘3’_ _
I — T ‘3! =8 —4—1=79.
The effiients of the five vanishing terms are 4} 5;~4‘5‘6, 4917, 413, 5,

X
~‘~ -

The method of Case 3 is adaptable ta ‘any number of basic terms less than r by successive
summatica with due regard to the considerations advanced under (i) and (i} above ****
w\ .
\\ EXERCISE 1.08

1. Write down succes§i¥'e~terms of
o v (4 20+ 30

\Q
2. What is thg‘\efﬁcwnt of the term involving p'¥ ¢'2 ¥ in the expansion of (p 4+ ¢ + ).,

8. Find the nurnber of residual and vanishing terms in

vV @314 2+5+6®; B+5+8)°

4. How many vanishing terms are there in the expansion of
(12)
(T+3+241)9; (24+3+4+5)
GL4+6+7®; (142+3+4+ 5%

5. What is the net numerical value of the coefficient of * gt rz in the expansion of (p + g -+ r}®
in ordinary powers of p, g, 7 ?

1.09 EXPONENTIAL AND LOGARITHMIC APPROXIMATIONS

Certain approximations are of frequent utility for the derivation of statistical formule, and

it is important to memorise them.
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(@) When p is very small :
(L +2pF =~e* and (1 —pF ~eo . . . o)
(6) When x is very small :
log, (1 + &) == (x — 14?) ] )
and N . . . . (i)
log, (1 — %) ~ — (x |- {x?) J
'(c) When x is very large :

#loe Vomg a5 s . . G
{a) The proof of (i} depends on the limits for n=c0: O\
1 n 1 n . ’\s\.
(1—}-?—?) e and (I-—-?;)__e . A
(1 -+ —) o gET, A\ 3
# A

A\
Put p~1 = #, so that #p = 1 and 3

(Ltpymeze, (14 e i,
S (U Py e O
This is equivalent to writing ” v
logs (1 _f_‘f'}f = px,
" wlog, (Lo p) =~ p,
log&@?_‘— p)ye~p.
Reference to tables of log, # shows tf{{t :
: .\}Sg,, 1-05 = (-04879,
. Ndg, 1-005 = 0-00499,
7 log, 1:001 = 0-00100.
A\

(b) The proof of (ii) depénds on the expansion of log (1 = ) as a power series by recourse
to Maclaurin’s theorerm. Fhle pracedure of the latter involves the initial assumption. that we can
expand the continuous fanction y = J(x) as an infinite series of the form

AV P = Aot Ao At 1 A g

The assum{it\ioﬁ is justifiable if the series derived by cvaluating the arbitrary constants

Ay Ay, .. Ay ls uniformly convergent. When x = 0, flx) = A4,, which we write as
Ay = F0).
For the first differential of J{(x} we have

d
‘};f(x) = Al -+ 2A2x + 3A3x2 -+ 4144-’33;
when x = 0 we write this as
a4
(Txf(O) = Al:

or more briefly £1(0) - A, and in general for the value of the nth derivative we write J™(x), whose
value we denote by f*(0) when x = 0, By successive differentiation we have
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‘ 24, 3. 2. 4;x +4.3. 4% . .,
fx)y=3.2.1.4,+4.3.2. 4, ...

) 3.2.1.4,+....

Hence we may put

£ 0 :
) 4 O 4 SO

=00 A =p)s A=ty A =T 4, =T e
By substitution of these values in the series for y = f(x); we get
¥ =FO) + 5 U0+ 5 S0 + 2 0 + |
x, SH0) 2 (0) + 5 A0) . et (iv)
Wien v = log, (1 -+ &), .
dy ;- A
T_flt ==t A
x 1+x ¢\
71+ ) = ~ (L + % o
P+ &) = + A1 + x5, AR

S+ x) = —3.2. (1424,
Fll+a)=—+4.3.2.(1+x75

When = 0, y =log, 1 =0, so that (0} =0. By substi!‘.g{ipn in the above we have
FHOY =1, f0) = — 1, f30) =21, FH0)ZL (3, £(0) =41 ete,

so that
X\ H xt
= W

log, (1 +a) =2 — = R
og, (1 + ) x":.2.+3 7T %

e . el . “"o ) . -
’ if « is Jess than unity, this must be convergent. For mstance, if # = 0-1, or less than 0-1,
i-, § sujé..‘-._z st be ?ess than the repeating{decimal 0-1. By recourse to tables of log, = it 1s easy
o test the error involved in rejectin\&‘all terms after the second, i.e. by using the relation (ii)

above ;
2

2O g, (1 + 9= — 5

The following shoy’i\\i:ﬁe level at which high precision is attainable :
ER : (x — 1x%) fog. {1+ ) Percentage ervor
0:5¢00° 0-3750 0-4055 ~5
6:0500 0-0475 0-04879 o~ 2-5
0-0100 0-00995 0-00995 <01

(c) Stirling’s Theorem, defined by (iii) above, may be written in the more convenient form

 wlewar e (an)
. logye (1) == (x + 3) logye & — # logy, 2:7183 + 1log,,6-2832 :
~ (% 4 §) logyy x — (0-4343)x + 0-3991 . . . . {vi)
nd it is scarcely profitable to undertake at

student can easily verify that (4} it gives
(b} the proportionate error in-

A'“gOIOUS proof of this approximation is tortuous, a
this stage. We shall defer it to Chapter 6, since the
3 very good approximation even when x is as small as. 10;
volved decreases as x increases.
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By applying (vi) above we find, for example :

log 8! 2 85 (0-9031) ~ 8(0-4343) -+ 0-3991 — 4-6010,
<. 812239.9 x 102,

log 10! >~ 10-5 — 4-343 + 0-3991 — 65561,

- 101 ~3599 x 102,

log 12! ~ 125 (1-0792) — 12 (0-4343) + 0-3991 — 86773,

. 121 = 475, 877 x 105,

We may tabulate these results as follows :

Actual value Stirling approximation Percentage errov
8! 40,320 39,900 1-60
101 3,628,800 3,599,000 0-83
12! 479,001,600 475,677,000 6;69
The Stirling formula provides a means of evaluating the coefficients'ef) binomial or fiper-
geometric series involving high powers of 7 in the expansion of (p &) or (p 1 ¢y Uhe
following result is important : N
o b e 2mp LV
alr —x)l — xo+d o= (Zm)em 747 N w)r-a+d
prid ‘,"\\: P
. . . . vy

T 2y — e o

In particular, when (p + g)=1and x =rp sq that (r —x)=nrq

?‘! e ?‘! 'r;:}’ru
A —ai O T
v“+}pw qm rred prp ('jm
)7 iRy rgye T Q)i igrest
\ rr+t 1
O A2 T (Zarpg
”.\."'- _..L!___ rp TG‘N,—I.._ - 'u'%;i
OF “we =L e )
AL Pq

The last result is of fundamental importance in statistical theory ; and we shall have occasion
to use it more theh once.

\‘;

Note on Approximate Solution of Differential Equations

The foregoing approximations crop up often in connection with the derivation of approxi-
mate solutions of differential equations in a form suitable for reference to tables of standard
_functmps » and it is here appropriate to mention a device which simplifies a solution involving
a logarithmic term with that end in view. Whenever the solution of a differential equation
involves a logarithmic term it is convenient to express the integration constant itself as a log-
arithm. For illustrative purposes, consider the equation :

dy _ Ay : .
dx (B R . . . . . . {ix)
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1 A
—-dy = dx
¥y T B

d A dx
J.y .[(B—x)

<o log,y = — Alog, (B—x)+¢ . . . . . (x)
YWe now put ' ¢ =log K,
o that log, y = log, K(B — x)™*.
Wy =K(B—x)*
KB-A(l Al
iy
When & =0, 3 = KB~*, which is the ordinate through the origin, i.e. \
x4 Oy .
y= }’0(1 —_ E) . - X .:\:} < . . (X])

This is an exact solution of (ix). If 4 is very large and Bis large m»ﬁomparlson with admissible

values of x, we may employ the approximation of (i) above, mz,‘\
Az N

Yoy, €8 | S T L (i)
. 2 M. .
it may be convenient to make use of the alternative appro%imation (ii). We then write (x) as
foggy = — Alog, B(.l — §)+ iog‘ K
= — Alog, (1 ""B) Alog, B +log, K
=— 4 lpg,?\“‘(l' — %) + log, B~ 4+ log, K.

\\A . .
-, log, ¥ —-Ioge KB = — Adlog, {1 ~3

s

_— xt 2Bx -}~ x?
"19 (KB—A) - A(? _278"2) = A( 25 )

' 2Bx + x*

\ N *

N - RpA o= exp. {A( ONE )}

AN
...\; v 3 2Bx - 3\ *
\ e y o KB 4 Bxp. {A(—"‘ZBg—)}
When x =0, y = KB4¢®* = KB*, so that
2Bx + x*

Yo~y exp. {A(W)} . . . . . (xiii)

EXERCISE 109

(Exx. 1-4) Make graphs of the following functions for the range # = 0 to 10, choosing a scale most
suitable to display the differences between the curves (using tables of natural logarithms) :

* When ¢ in e is unwieldy it is convenient to write the [atter in the form exp. (t}.

4



50 CHANCE AND CHOICE BY CARDPACK AND CHESSBOARD
. . 1., -~ ] . ‘_x"_l_x_“
1. ()= () x— 5 (iii) log, (1 + «). (iv) « z+t3
2
2. (@) —x (i) — (x—l— %) (iii) log, (1 — x).
3. (1) (101 () ¥ (i) 14 150"
4. (@) (LD (i) €10

8. Compare the rapidity of approximation for log, (1£) by using
(i) log, (1 + &) for &= <% = 0-273.

(i) log, (i _—I: z) for x=0-12, Q.
6. Compare, as in 5, log, (1), taking <\
(i) x =& = 0083; (i) x=00s. O

pand\"fl»dl)” in 2 stages (as {5471)10
power and to 4 terms); and the exponential serics for

7. Compare the results of using the binomial theorem to ex
to 4 terms, and then this result again to the 10th
e, to 10 terms :

. . xz "xa

=14t at+ 4+ 4, ;fh\r =1
! ar o3l Qg

8. For a = 0-001 and x = 100 compare the resulth.df the following approximations with thnt of
direct calculation by logs and with tables of powerslof e:
0 I +a) =1+ na, " (i) (1 + g ~eon,
8. Compare the values of N

3

<1 o510 = 1 &
) 2.~ ~dx. . i) ) ——; |[tan? .
()Zx J.]_.ﬁ. x?i‘x\ (“)gl"f“i"f2 [ ijvs
N
10. Express the following as{nfinite series :
ot P $/ —t
(i) e2; (11')\1;0ge (1 - g) ; (ii.i) 1log, (; t z) 5 (iv) tan~! w,
QY
P\ 110 FINiTE INTEGRATION

Q)
h

‘We can regarh‘iﬁtegration as the solution of a differential equation inasmuch as the evaluation
of the left hand expression below is equivalent to finding the unknown A4 of the expression to
the right of it :

d4 .

A= I Ldvy = = . . . . . . i

_ Y s 7 : ®

we may speak of integration as the operation inverse to differentiation. We shall
now see that the operation of finding the sum of a series of discrete terms involves the a

performance of solving a difference equation and is in fact the operation fnverse to A, i

Accordingly,

nalogous
£l

£=n ’
Sn:zua:; ASn:u'n-

&=0

Thus the figurate number of dimension 4 and rank # in Fi g: 115 the sum of all figurate numbers
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of dimension (d — 1} from zerc rank to rank # while the figurate number of dimension (4 — 1)
and rank # (Fig. 13} is the result of performing the operation A on the figurate number of rank
{n + 1) and dimension 4, i.e. :

r=n

¢F, = z I, and 41F, ., = A%F,,
r=0
If we label the top row of the vanishing triangle (p. 33) as the series vy, oy, vy, . . . @, and
the second row by u,, uy, #s, . . . u,, the two series are connected -by the relation u, = Aw,,.

S0 stated the relation exhibits how we generate the series whose general term is #, from the
series whose general term is 9, ; but we are entitled to reverse the process. Clearly, there
must also exist an operation which permits us to generate v, from #,. We shall denote it by
A=Y so that v, = A~1y,. 'Thus A1 signifies what we have to do to u, in order to getv,. The
operator A acting an o, means : find the difference between o, and its successor.> The operator
A~ acting on #, means : find the term of a series such that the difference Jbetween it and its
successor 18 u, itself. A0

The clue we get from Figs. 13-14 suggests that we should examine, the meaning of the sum :

oo

#n== "
2 U = Ug Yy F Ugrn b (B,
. w=s A
By definition, #, = Av, and A=y, — @, 50 that ’

fh=1f A \/
2 1= Avo o+ Aoy + Avgia . A vy + AR
= (Pat1 — V) F+ (Vase — Dusy) + (Tops — a+;.) Fooe b (@ — ) + (1 — )
= — Ty + Ty N
= A" 11&54_1 — A~ 1Ha . . . ’.:":. . . . . . . . . (ii)
7 AN
Example 1. Find the value of z M
3

2
R '
n(n+1) and\g’ U, = vy — 3. We have to find v, a function of #, which

2 N ne3
satisfies the relation #, = Av,.» We know that

A(?z\il;'\l)ta) =(n-+ 14+ 1) — (n4 1)®

In this case u, =

\"\ = (n--2)(n+ ) — (n+ Ln(n — 1) = 3n(n + 1)
RN G )
e R
Y R CES VL
3.2
9.8.7 4.3.2
BTy T w4
7
..EJS_vszsozzuﬂ'
k]
. 7
Check. > ity =6 + 10 + 15 + 21 + 28 — 80,

2

4
Example 2. Find 3 3",
0
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Here 3" = u, = Av,. We have to solve the equation A~18" = v,, whence we obtain the
required sum as v, , — v,. We know that
A3r = 3ntl — 3r = 373 — 1) = 2(3%),
Adn

2=3n:um

. __Sﬂ

..Un—i,

N S
..0 —2 2— 9 :
4 35 —1 243 —1

3" = = = .

Check. 143 +9 127 +81 = 121.

N
2 AN
PN
Ny

*AXNOTE ON INVERSE OPERALIONS

¥

The student who is familiar with the elements of the inﬁniteéi‘rg}lal calculus will also be faraiiiar
with the notion that integration is the operation inverse to differentiation. In the same vur the
summation of terms of a series which is discrefe in the s,eh%’already defined (p. 31} is the opora-
tion inverse to the difference operation denoted by&x™ In higher mathematics certain conyven-
tions with reference to operators are in general usé€ ;) but earlier symbolic devices for the more
elementary operations of algebra and trigonometsy” are neither consistent #nter se nor with later
usage. A brief digression on the symbolismtef inverse operation may therefore be helpful to
the reader. To illustrate the modern usagéywe may consider a simple operation of the caicuins
of finite differences denoted by the sy,mboi E. 'The operator E steps up the rank of a ierm,
e.g. EGF,)=2%F, , or,in general, o\

\ \Y(un) SElgrp = Uy + Auﬂ'
1ty 1) =ty 5= E(E . u,).

It is the accepted conventiémirfo indicate by the index 2 the instruction that we are to perform
the operation E twice, Le @y, = E%(n,); and, in general,

O : E™u,) =1, ., so that Em(uoj = U,,.

N,

This symbolismy gWeS a new insight into Gregory’s formula. We may write
vV Bty = u,+ Au, = (1 1+ A,
In conformity with this symbolism the operator (1 + A) = E, and
Eruy = (1 4 A)ru,
The student will note that this is equivalent to Gregory’s series, if we assume that the
operator (1 + A) obeys the ordinary laws of arithmetic, as we do implicitly assume when we

compute the amount accumulated by compound interest at 5 per cent. on principal P in 7 years
in accordance with the formula (1.05)* . P. On the assumption stated, we may expand the
above as follows +
E™Mug) = u, = (1 + nA + Ry A% 4 mgy A3 L Lete) ug
= 1y + #Auy + ng A%uy + ny Aduy ... etc.

**%% Omit on first reading.
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Fig. 13. SBuccessive application of' fhe Delta operation to the serfes of Fig. 1.
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Frc. 14. Summation of Figurate Number Series as an Inverse Operation.
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Accordingly, E® means that we have not yet performed the operation & on what follows. 'I'his
usage is on all fours with the conventions of indices in elementary algebra, since #', 72, 1t cte,
mean respectively : * perform the operation of multiplying #° (= 1) by » once, perform the
operation on the result a second time, perform the operation on the second result a third time,
and so on”. We may write #° in the form #1~%, and more generally we may regard the opera-
tion denoted by the index — x as the operation which neutralises the result of the x successive
operations denoted by the index #.

The index in sin~1 x signifies an inversion of the operation denoted by siz in this sense.
S x signifies the length of the semichord subtended by the angle x in a circle of unit radius.
Sin~! x (inverse sine) means the angle which subtends a semichord of length x in a circle of

. . . T ) . ar .
unit radius, c.g. if x = 5o Sinx = lLand if x=1, sin"1y= 5 Unfortup\atcly, the symbol

sin® & for positive values of » is not consistent with the generalised indef™otation sct forth
above, since it does not signify successive performance of one and the sane operationn.  "The
operator sin™ instructs us to perform two different operations one of scm\lchord-spcciﬁcution and
one of successive self-multiplication. 'T'o be consistent, we ought t0™Write it in the form (sin x).

The foregoing interpretation of the notation of the snverse (\ap"g:ration implies that £~ is the
step-down operation, i.e. E~'u, = u, _,, so that

E—Q(E2 uﬂ) = F- 2(un+2) = {i@-ﬁ_z = U,

If we were consistent with the symbolism of inverse Optrations, the symbol log® would signify
that we have not yet performed the operation of reglicing x by its logarithm ; and we should
write antilog, x = log;7" x. If we write & in the f5rm exp.(x), exp.%(x) would signify that we
have not yet performed the operation of raighily e to the xth power. Since & = log, v when
exp.{x) = y, we should write exp.—1 exp.(x) % = log, v, so that exp.~* (y) = log, .

The identity of the operator £ and the.opérator (1 4- A), and hence the identity E® = (1 -|- A
cartics with it the identity (E — 1) A, and hencc also (£ ~ 1)* = A°. This permits us to
obtain the expression \\‘

Ay, = (F — 1,

= E*0,' & x . E* Wy + x E*" %, . . . cte.
=Y — X Uppp g T Xy Hptp_a . . . ETC,
Nuofﬁé XUy Xy Uy — Xy - U,y . . . etC.

The reader Sth:llE be able to test this identity by recourse to any of the figurate series of

LOZ KKk

s
QY

1.11 APPROXIMATE SUMMATION

In practice, we perform the operation of integration by relying on our knowledge of the
form A must have in (i) to yield the function y as 1ts differential coefficicnt ; and our ability to
do 50 depends thus on the possibility of differentiating a wide range of functions. '"T’he method
of summation set out above is analogous. It is, however, a method of much less extensive utility,
because the operation A is of much more restricted range than differentiation in the infinitesimal
domain. The main reason for this is that there is no operation in the finite domain analogous to
d du d ' :
T = 5 o fw). R

~ Exact summation of many discrete series is in fact impossible by recourse to the use of the
nverse operation A7, and we have either to rely on ad hoc methods, such as that of figurate
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summation in 1.02, to achieve our end, or to content ourselves with a good approximation. In
practical statistics, a good approximation is all that we need ; and we shall mainly rely on an
approximate method, when we have to sum discrete scries of terms in subse quent chapters. The
summation of 2 harmonic series will serve to illustrate the principle involved, and is apposite
inasmuch as there is no exact summation formula for a H.P. on all fours with the familiar sum-
mation formule for an AP. or 2 G.P. 'The simplest H.P. is :

11 1 11

v T 23 1

"The gencral formula of this series is evidently

1 "
Yoo v . . o N . (ii)

The corresponding continuous function of y is the rectangular hyperbola, 3&%;. The curve of

this function goes through every point corresponding to the terms of thk harmonic series ; and
we can make use of this fact to get an approximate summation fotshula for the HL.P., ie. to

evaluate )
x=h y

2 1
‘gay,; = z‘,: p \\ . . . . . (iii)
: AN

The possibility of doing so depends on the geopmétey of the histogram, a visual device to
exhibit the growth of a function which increases hy discrete steps, as does an A.P. or a H.P.
A histogram is an array of columns. The height'ef a column represents the numerical value of
¥ corresponding to a particular value of x. Baeh column is of unif width on the same scale as
Yo Its width thus represents a unit step™Awx of x, marked off at the mid-point of the base.

Thus Ax = 1 by definition, sc that R

NEZIE et T )
N\ =k

x=h
O T =S . L
P \ r=a =g
The element y, . Ax is the;'a}ea of the column corresponding to a particular value of . The
total area of the hjstogr\a\s’rrfaetween, and including, the columns of height y, and y, is therefore
numerically equivalegit'to the summation on the right of (v).
Fig. 15 shows'that a continuous curve passing through the mid point of the upper extremity
of each columf_of the histogram alternatively cuts off a triangular strip (red) from the top of a
column and takes in a triangular strip (black) of nearly the same size from an adjacent column,
Hence the area bounded between the ordinates at ¥ = @ — § and & = b + } is approximately
cqual to that of the histogram sector including at its extremities the columns of height v, and

By Le
b+t
J y.dx=
£

1 -

b

Sy oo W)

*=u

When xis very large, the correspondence between the eckelon contour of the histogram and the
smooth contour of the curve is very close ; and if & is also very large compared with a or vice
versa, we may put : -

ry®=z% L )
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Y= 1 ] L] L7} 5 E] ¥z ] L Yo

Fig. 15. ‘The area of a histogram with column of Uit Base represents the exact value of the sum of the terms
of a series within specified limits, Approximately, this is equivalent to the area enclosed bwa smooth curve
through the mid-points at the top of each column znd ordinates respectively place one-half\interval to the left
2nd to the right of such limits. The accuracy of the approximation depends on the slope \h\thc region involved,

'\
\

The utility of (vi) and (vii) depends on the fact that we can often evalvate the expression on the

left, when there is no available method for deducing a formula fef/the expression on the right.
For instance, S

b+14p ’

I ~.dx =log, (b + }) — Iogs\fa,‘— H
a—3 & &

Consider the nine terms of the Harmonic series cittd™bove from y=05x=210y=01

(x = 10) inclusive. By direct addition we find théir sum as follows :

LR R R R ARt L Ry

= 0-5000 4 0-3333 4- 0-2500 4 O-QOQO {;.0-1667 + 0-1428 4 0-1250 + 0-1111 - 0-1000
—_= 1'9289. i...’

L W
Correct to four significant figures th%-efure :

¥/

b\ |
P 2 =192,

)
The corresponding ar;:ﬁ%ﬁclosed by the curve is bounded by ordinates at x =2 — 1 = 1-5 and
% =10 4 } = 10-5,%\Its area is, therefore,
O
O log, (10-5) — log, (1-5) = 2:352 — 0406
= 1-948.

The proportionate error is small, being (1-946 — 1-929) + 1-929, which is less than 1 per cent.
To show that it is still smaller if we extend the range from x = 2 to # = 20 is a useful excrcise
for the student. Since the function changes very rapidly in the region x =0 to x = 2, we
introduce a large source of error by including the first term, a circumstance which emphasises
the need to use devices of this sort with due regard to the properties of the function in the re gion
with which we are concerned. In particular, we cannot expect great precision if a region where
the gradient is changing steeply is near either boundary of the distribution. If a function is

symmetrical, or nearly so, we can get highest precision by placing the origin where the axis of
syminelry cuts the abscissa.
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EXERCISE 110

1. Find an expression for the sum of all terms from rank @ to rank & of the following :
(@) 34+ 2x; (B) 3+ 2x¥; (¢) 3+ 2x 2 242,

2. Evaluate z (23,
1

3. Sum to six terms :

3412+ 484-1924. ..

QS
4. Find the sum of » terms of Ao
a+tab+ab® 4 ab®+ ., \\\
'\
\/
5. Evaluate: =R ST VI NP S
« LEvaluate: Be A TE T 2 /?> }
\."\\\o
* 3
6. Sum: L4704 70 L 70 4 to o\

\NY/ :
7.* Find an expression for the sum to # terms of the squa eé';:;?f the natural numbers by expressing
#? as the difference of cubic terms. O
8.* Find the sum to # terms of the cubes of the paf:ur;i numbers by the method of the previous
QQ‘,‘
example, TN

9.* Seck a meaning for #~™, and hence find 2formula for Ax(-".
N\
N )
10. By means of (9) evaluate the sum\ ‘oP the first six terms of

1 1 1 5 1 1 1 1 1 1

“Orziwsa P rrsyss s Yivrees



CHAPTER 2

THE CALCULUS OF CHOICE

201 DEFINITIONS

DrrricuLTy in dealing with problems of choice, i.e. sampling, arises less in connection with the
solution of the mathematical problem than with the selection of the mathematical operation
appropriate to its verbal formulation. It is therefore desirable at the outset to define m explicit
terms conditions relevant to the enumeration and specification of samples. Also at the outset,
it is well for the beginner to realise that difficulties which besct the verbal formulation will be
less than otherwise forbidding, if study of the visual aids keeps in step with Peading of the text.

2\

Universe and Sample >

N

Subsequent definitions presuppose a collection or collections of thiflgs (ftems) from which we
extract the sample or samples under discussion, This collectipA/ls the universe of discourse,
We shall adopt the letter # as a fixed convention to denote.thie number of items in a universe,
with subscripts if necessary to distinguish one universe fromanother. A sample is a collection
made up of items from the universe. We shall use t edetter 7 for the total number of items
in a sample, and accordingly speak of a sample so labglled as an 7-fold sample.  An r-fold sample
is a sample with a niche for cach of 7 items taken from the universe (or universes) of discourse.
Inter alia, the extraction of such a sample may idyelve

(@) simultaneous or successive selectiog, 8f r items from ome and the same universe of n
items ; "

(b) simultaneous selection of ong.ften from each of  universes respectively containing #;,
fy, . . . n, items ; ™

(¢) successive selection of 15 mx items by successive withdrawal of m items from each of

X universes. <

Repetition O

If we limit our defifition of a sample to a simultaneous 7-fold occurrence, a sample cannot
contain more items'than the universe or universes from which we extract the items themsclves.
For samples 'fre{n\a single universe 7 must then be numerically cqual to or less than 2, We
are, however, ‘entitled to use the term in a wider sense, as when we call the result of a 10-fold
toss a sample of the behaviour of a coin. A sample in this extended sense admits the possibility
of choosing the same item to fill more than one niche. When we no longer speak of sampling in
the. more usual and restricted sense of the term, such repetitive choice of items from a single
UnIverse presupposes reinstaterent of any item chosen to fill a given niche before the possibility
of withdrawal to take its place in a second niche : and the value of 7 has then no upper limit.
According as we do or do not permit repetition of this sort, we have to distinguish successive
acts of choice as repetitive and restrictive (Le. non-repetitive). It goes without saying that

(@) simultaneous selection of 7 items from one and the same universe implies that identical
constituents cannot be present in one and the same 7-fold choice ;

(5 mcce.ssiz:e sclection admits the possibility of replacing items chosen and therefore the
possible repetition of the same item in an r-fold act of successive choice.
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Since repetitive choice involving withdrawal from a single universe implies replacement of each
itemn chosen before choice of another, repetitive choice is necessarily successive; and since
replacement implies the intervention of another occurrence between two single acts of choice
stmultaneous sampling from one universe is necessarily restrictive in the sense defined. If we
cheose to regard items of one universe as identical with items of another, the distinction between
simultancous and successive sampling is no longer fundamental from this viewpoint. Simul-
tancous selection from different universes containing identical items is cquivalent to successive
selection from one universe with replacement. '

With due regard to the two types of sampling which we here distinguish as repetitive and
restrictive, we should be alert to a distinction between two classes of models which provide a
background for statistical analysis : (a) the die model; (8) the urn and the card pack model.
The tossing of dice or the tossing of a coin arc cxamples of sampling in the sense that cach score
constitutes a sample of possible scores. Such sampling is necessarily the repetitive type, since
the extraction of the sample, i.e. recording the score, leaves the universe’unchanged. From
this point of view, a penny is a 2-fold universe and a cubical die is a 8-fold universe. A triple
twss of a die amounts to the same thing as a simultaneous single tog;siof 3 identical dice, and we
can equally well regard the sample, i.e. the score, obtained as on®yway of : (a) selecting repeti-
tively 3 items from a single finite universe of 6 different itemgy\(b) selecting a single item from
cach of 3 identical finite universes of 6 different items, Jf€quipped with a trap-door lid to
ensure one-way traffic (outwards), an urn containing balls,\each with some distinctive mark, is a
set-up which admifs restrictive sampling alone. Simfiltdncous selection of cards from a pack
Is also restrictive, but successive selection need nat\be. According as we do or do not impose
replacement of each card taken before withdrawal. 6f another as a condition of choice, a card
pack may thus be like or unlike a die model fit*the sense defined above. To use a card pack
with relevance to a particular statistical siyuiijion, we have to make this condition or its contrary
explicit. oA T )

A clear appreciation of the inherént difference between different types of models frlom this
point of view is the more important,\because statistical text-books commonly employ a dte model
(tossing of a coin) to illustrate‘sa\npling processes which involve withdrawal without replace-
ment, That this is often persnissible (p. 79), in so far as the universe and sample are respec-
tively very large and relatively small, does not constitute a sufficient reason for 'addlng to our
difficultics by confusipg}ﬁe issucs involved. The postulate of an ifinite universe is often
inapplicable to a stdtistical problem; and we are on safe ground if, and only if, the model
we visualise truly, teproduces the rclevant peculiarities of the system we are investigating.

. NN ’

Ordered Chagcy

In virtue of its composition one r-fold sample is the same as anther if, and only if, each class
of items represented in one consists of the same number of items in the othf:r. .If we regard the
sample as a historical occurrence we can conceive of cach niche as a eacancy in a time sequence and
distinguish different ways of making up one and the same ss.trnple by the temporal ra‘nk assigned
to a particular item. Thus one way of extracting a sample is the same as a sceond if, and only
if, every item occupying a niche in one sample has the same clgss speFlﬁcatlon as the item occupy-
ing the corresponding niche in the other. If sampling s strictly snn‘ultaneous, FhlS interpreta-
tion of the number of ways of extracting the sample does not at first sight tally with hne.ar order
in a time scquence ; but cvery linear arrangement of the cards Placed face 'upwards in a row
cotresponds to a temporal sequence of exposing the facs:s one at a time. In this sense successive
withdrawal without replacement and simultancous withdrawal of the same number of cards

admit of the same number of different ways of extracting a sample of given composition.
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Enumeration of samples thus corresponds to what we also speak of as combinations, and
different linear permutations or linear arrangements correspond to different ways of extracting
asample. By all possible ways of making up a particular sample, we therefore mean the number
of linear permutations of its r constituent items. By a particular sample we mean a particular
combination,

Classification

Tmplicit in the definition of a particular sample and hence of particular ways of cxtracting
a sample s that each item of one and the same universe is in some way distin guishable from
every other.® This is, of course, consistent with the recognition that they may be more or less
alike in virtue of attributes they share ; and we can classify objects of a universe in mnore than
one way, according to what attributes we employ. Thus we may classify the €ards of a pack in
two classes as picture cards and others, in three classes as picture cards, ac€Sydnd others, in two
classes as red cards and black cards, in four classes as cards with 2 or more Pips; aces, black picture
cards and red picture cards. The reader may find it helpful to set oub, ather classifications of a
full pack with the proportion of cards in each class. The only mestriction of a classification
relevant to our purpose is that it must be exclesive and exhaustipé il the sense that

(@) all items assigned to a class share an attribute which pertains to no itemassigned to any
other class ; \\
(b} every item in the universe is assignable to ong-0r other class.
In virtue of any such classification we can impose a 'pzrftieular class structure on a universe, and
classify different samples or ways of extracting sdmples accordingly. It will be convenient to

use the letters @, b, ¢ . . . respectively for theJtumber of items in the universe assigned to the
classes 4, B, C ..., so that (@+5+65h. )=n We shall likewise use u, @, w . . .
respectively for the number of items of e classes A4, B, C . .. inan r-fold sample, so that
(#+o4+w...)=r. Weshal aIgo”ﬁSe m for the number of classes in the universe itself.
If no two iterns share any specified atiribute, being unlike in all respects relevant to our problem,
each item belongs to a class by its€lso that a = 1= p = ¢, etc,andn=(14-141.. . tom
terms) = m, <"
O
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& |00 |09 06| 04
¢ 90| CO | 94 | v
o (o0 00 00| o
& 2020 | 00

] ~ Fie. 16, Linear arrangements of 2 objects from a set of 4 -
with repetition (qlf pairs) .

. . . . . . . . . . 4.4 =42
without replacement {black pairs only) . . . i . . L 4.3 — 4@
* : . .
(i"})'hii ;eg;ier will appreciate the importance of this qualification when we come to the derivation of {ii) and
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202 ELEMENTARY THEOREMS OF OrRDERED CHOICE

Elementary text-books cite three fundamental theorems of lnear arrangement.

(i) Objects unclassified and no object to be taken more than once.

Consider the case of 5 letters g, &, ¢, d, € from which we may choose 3, as in the table below.
There are 3 ways 4, B, C, D, E of fitling the first rank, 4 ways, I-IV, of filling the second, and
S ways of filling the third corresponding to the number of items in each of the pigeon holes.

! |
A ' B : C D E
a b ¢ b a e’ ¢ a b d a b e & ;b\|
I a & d b oa d a d d a ¢ e
a b e b a e ¢ a e d a e g d
| >
i a ¢ b b ¢ oa c b oa d b & ¢b a
II a ¢ d b ¢ d c b d g bi’e e b ¢
a ¢ e b ¢ e £ b e dab, e b d
] ~ .
:’I ’ \J
' a d & b d a d alNd ¢ a e ¢ a
m a d ¢ b d ¢ ¢ .0 @ ¢ b e ¢ b
a d e | b d e e N\ ¢ d ¢ e e ¢ d
a b e a v:::'C” e d ¢ a e d a
v a e ¢ B e g™ ¢ e b d e b e d b
' a ¢ d | B oesd® t e d d e ¢ e d ¢

The total number of arrangemen ‘in"the table is determinable by setting out : (f‘) all ways of
illing the first place (5); (b) alh\remaining ways (4) of filling the second after fixing the first ;
(c) all still remaming (3) way{of filling the last. 'This is evidently 5 .4 .3 ; and in general the
number of ways of arranging r of # unlike things in a row without repetition of any item is
e —Dn-—2).. .\x“ﬁa‘ctors. We write this as

.'\’\ . ﬂPr — nfr} . . . R . . . (1)

al
e

If we take allthedtems simultaneously, 7 = 7, and
\ :

tP — nt) =gl . : . : . . (ia)

We speak of this as the number of linear permutations of # things taken a// at a time.

(i) Objects unclassified but a given object may be taken repeatedly. .

After filling the first place in # ways, we can still fill the second place in 7 ways. Hence
we can fill the first two places in #2 ways and in general we can fill 7 places in

nTways . . . . . . . (i)

There is no special symbol for this. If 7 = 2 it becomes n*. ‘

{1ii) The objects are classifiable into m groups with the same a‘tmb‘utes, a of one group, b of a
second, and so on. The problem is to determine in how many dz.s‘tmgm._vkabie Ways we can arrange
all of them taken together, if we iake no account of differences between items of the same class.
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By definition #=:(@+ b4 ¢ ... to m terms). We denote the required number of
such arrangements by P, , . ... Now the a objects of one class are themselves all
distinguishable in some way, and with due regard to such differences we can arrange them
in gl different ways corresponding to any distinguishable way of filling each residual niche
allocated to an item of some other class. The total number of arrangements would then be
altp We now do the same with b objects of a second class, so that the total number

a.b.e. -
of distinguishable arrangements is : 2! 81*P, , . ...andscon. Since all the objects of each
group are in some way distinguishable, the total number of arrangements will be 7', i.c. #l,
al=alblel .. %P, L.
. e = L . . 111
drbee- al bl el . . . mfactors \ (i)

N

The expression all of them taken together implies the restriction that wo-can-take one item once
only. If we remove this restriction, there are distinguishable different ways of filling each
place and each way of filling each place is associable with cach waybf filling any other. So ihe
number of #-fold arrangements we distinguish as different is £ &

mom.m . . . nfactors = e | . . . - {iv)

Equipartition of Opportunity \Y

 §

Our preliminary definitions have specified the meaning we here attach to the number of VS
of extracting a sample, viz.: the number of different linear arrangements of its constituent
items. ‘The device of Figs. 16-17 brings intodfocus a peculiarity of linear arrangement spcaially
significant in connection with the role of suchia specification in the realm of mathematical prob-
ability. These two figures refer to a un'qerse of four items, #iz. : a card pack consisting only of
! spade, 1 heart, 1 diamond and 1 cluh ¢ but the generality of the procedure is easy to recognisc.
If the condition of choice is replacefagnt before subsequent withdrawal, each of the ## (here 47)
“ways of extracting a 2-fold samplg in accordance with, (i1} above corresponds to one of the pairs of
an # .. # lattice of the type showntd Fig. 16. "To each row of the lattice corresponds one itcm of the
universe ; and successive'p'rgeon holes of the same row exhibit the result of drawing any one
of n cards after first drawing the particular item indicated by the symbol in the left hand vertical
margin. If choice is#0f repetitive, one such pair drops out of each row, leaving (# — 1) pairs
per row and a to'qal\':uf n(n — 1) = n‘¥ pairs in accordance with (i). -

In visuali’singﬂ-fold samples of either type by this device, the underlying principle 1s that
each item first token has an equal opportunity to associate with each remaining item. We can extend
the same method to the representation of linear arrangements of 3-fold samples or to larger
samples by successive application as in Fig. 17. If choice is repetitive, there are n? ways of
arranging the two items first taken to make up a 3-fold sample ; and there are n ways of taking
the third. Accordingly, we lay out the n? ways of extracting a 2-fold semple in the left hand
ve'rtical margin and assign each such sample an equal opportunity to pair off with each of the
n items in the universe reconstituted by replacement of cards extracted before withdrawal. T'he
resulting lattice now has 72,7 — 53 pigeon holes. If there is no replaccment the lattice will
have only n'® instead of # rows; and two triplets will drop out of every row, leaving (n — 2)
pairs per row or #'® | (n — 2) = »!3 in all. '
 Every time we repeat the chesshoard operation, we assign to each arrangement of (r — 1)
items already taken to make up an r-fold sample an equal opportunity to associate with each
residual item cf the universe, By identifying ways of extracting a sample with linear arrangements
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of its constituent items we therefore signify a method of emumeration based on equipartition of
opportunity for association. 'The recognition (p- 94) that such equipartition of opportunity is
implicit in the enumeration of linear arrangements, and hence of ways of extracting 2 sample as
defined in 2.01, clarifies the notion of randomisation implicit in the connection between
mathematical probability and probability as we use the word in common speech.

' v 4 &
00 | 000 000 Q00 004
o Qo0 QOO 894 %3
o | 00 a0 000 008
4 | 020 | edv [ e | oog:
K, oY OO0 7Y "
vy o0 vivly 000 | A 3008
v v Q00 000 (D wed
S 88 | OBO o L Oy
" 000 He |00 43
"0 ) 000 Y 000 ol
00 000 | 0o ™M 000 009
" ) e 00 0Qx
& YYD M | 208
&0 a9 A~ aoo 494 O
L U &40 | Sew 00 BSOS
& BHO B0 QB0 DR
without replatie)\a\bnf {block pairs only) . . . . . . . R LU B T
O EXERCISE 202
AN
SeT |

Make chessboard diagrams to solve the following :
1. In how many recognisably different ways can two coins fall : (4} if both are pennies; () if
one is a penny and the other a half crown ? '

2. In how many ways can three dice fall if thrown together ?

3. In how many ways is it possible to give 3 prizes to a class of 10 boys, without giving more
than 2 to the same boy ?

4. In how many ways can 2 persons occupy 6 vacant seats of a bus ?
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5. In how many ways can we select a consonant and a vowel out of an alphabet of 20 consonants
and 6 vowels ?

6. In how many ways can 12 undergraduates and 12 undergraducttes form themsclves into
couples for a waltz ?

7. Having 5 pairs of gloves, in how many ways can a person select a right-hand and 2 left-hand
glove which are not a pair ?

8. With 4 seals and 6 sorts of sealing wax, in how many ways is it possible to seal a letter ?

9. A cylindrical letter lock has 4 concentric rings of 6 letters. How many different ursuccessful
attempts to open it is it possible to make ? Q)

10. In how many ways is it possible to put 3 different letters in 4 diffcrg:r{'t\eﬁrelopes ?

4 e 0'
< )

EXERCISE 202 LY
S N
ET 2 ::<>,
1. In the Hindu-Arabic notation, how many numberg@c}xsist of 6 digits ?

2. 'Twenty-one schoolboys run a race for 4 prizesh In how many ways is it possible to allocate
the prizes ? N

3. How many different sums is it possible to donate from 2 purse which contains a pound note,
a ten-shilling note, a half-crown, a florin, ashilling, a penny and a half-penny ?

'\..

4. In how many ways can 7 elegtors cast votes for 18 eandidates ?

5. How many different a;rq’;}\gemcnts of all the letters a, b, ¢, d, e, f begin with ab, if no letter
occurs more than once ? ."\';,\

B. On a shelf ther@, are 5 books in Latin, 4 in Hebrew and 8 in Greek. In how mMany wuys can
the books be arranged;’ keeping all the Latin together, all the Hebrew together and all the Greek
together ? &\

\ }
| if’};. In how many ways would it be possible to arrange the same books indiscriminately on the
shelf ?

‘ 8,P If 12 ladies and 12 men go to a ball, in how many ways can they take their places for a contre-
anse ?

9. How many different signals of 4 flags is it possible to make with the flags of 17.8.A., U.8.5.R.,

Sl;}r.itain, France, Holland, each of 3 Scandinavian nations : {i) on a single mast, and (if) on a 3-masted
ip ? :

1o, How many different sequences is it possible to ring upon 8 belis? In how many of these
will a particular belt ring last ?
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EXERCISE 2402
SET 3

1. In how many ways is it possible to arrange the letters of the words parallelepiped, indivisibility
and Mesopotamia ?

2. In how many ways, irrespective of order, can we select 2 blocks of 4 letters. from 3 as, 3 bs,
Zeand ad?

3. Out of 15 consonants and 5 vowels, in how many ways is it possible to make an arrangement
consisting of 3 different consonants and 3 different vowels ?

Q"
4. Out of the letters of the alphabet, in how many ways can we make an arrangeiment consisting
of 4 different letters containing the 2 letters @ and & ? oA\
NS ¢

5. 'There are 10 different situations vacant. Four are for men and Sfof “women, the remainder
for cither male or female candidates. In how many ways is it possible tg fill the posts available ?

$
6. In how many ways can one make an arrangement of 4 lcttefé}rom those of the words choice
and chance 2 \
o

7. Eight men take their places in a boat with 8 oars, 'I‘yzo of them row only on stroke side, one
of them only on the bow side ; the others on either side\Jn how many ways is it possible to dispose

of the crew ? o)

_ X

8. In how many ways can 3 boys divide 12 O;éﬁges among themselves, if each takes 4 ?

9. In how many ways can a school of 40 bo’ys divide themselves so that 24 play football, 22 play
cricket, 30 practise music, 4 play squuh'm¢10 take a country walk ?
(™
10. A man has 10 ghares in Guest Keen and Nettlefold, 12 in Imperial Chemical Industries, 7
in Unilever Ltd. and 5 in Austin .@I'o‘tors. In how many ways can he sell any or ali of his shares ?

¢t\"
OYY :
203 RELATION @@“FIGURATE NuMBERS TO ELEMENTARY THEOREMS OF

W\NSELECTION IRRESPECTIVE OF ORDER

The accompanging” chart (over page) shows the relation of the figurates of 1.01 and 1.02 to
two problems of simple choice specified by the objects chosen without regard to t_he orde;.

(@) We may take one, fwo, three out of 5 letters of the alphabet successively without

replacing letters taken or simultaneously, i.e. without using the same letter more than once.

The number of different selections possible are
3

for ome choice (1 +1+1+ 1+ 1) = z 0F, =1F, =1F,_,,,,

1

for two choices (0 +1 +2 +3 +4)= D> 1F, = 2F, = 2F, 4.,

2, = 8F, = 3F,_.,.

l

for three choices (0 +0 + 1+ 3 +4-6)

>
>

w
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In general, the number of selections of 7 out of 7 unlike cbjects is

(m—r+1+r—1" an

f—r+1 7l - 71 '

r

As in (i) of 1.03 above
n n!
My = — = ———————.
T T A )l
The Pascal number of row # column 7 in 1.03 therefore defines the number of combinations of #
things taken 7 a time, i.e. how many 7-fold samples of n things we can distinguish if we disregard
the arrangement of the constituent items. We write this customarily as

"C, or (’3) , ~
¥
n ntn n! ‘O
’ (r) A dm—n O )

(b) We may take one, two, three out of 5 letters of the alphabet th make a set, repeating any
letter as often as is consistent with the presented choice. AN\
We now have the following results : ¢

ALY
One choice (1 +1 +1 4+ 1 + 1)%—2 OF, =1F,,
4 3 1
) 5
Two choices (1 +-2 4+ 3 4 4,~j— B) = z 1F, = *F,.
a !
&Y 5
Three choices (1 + 3 -+ 6 10 + 15) = Z °F, =3F,.
<

And in general the number of differefit selections of 7 letters out of # different ones is
™
. ‘\(n—]-r—l)‘” n+r—1! ..
)= = - (it)
PN\ 7l s — 1!

If the selection involves "z{a:)qiany items as the number of items in the universe itself (i.e. 7 =m),
we have the well-knowah.expression
O

\ —1¥!
O wp _ (2 —1)!

e

. = ; ) ) ) . (il
~O° ” nl(n — 1)! (i)
The relation'({i) above specifies either
(@) the choice of one item from each of r different collections of the same # different ones ;

(8) the choice of 7 items out of = different ones on the understanding that we are free to
replace any item chosen after recording the choice of it and hence to use it repeatedly.

Another elementary theorem of selection often cited is the fotal mumber of combinations of m
things taken 1 or 2 0r 3 . . . up to n at a time without repetition. The solution is

O FC, G L L L e,

'Ithe valuation of this expression depends on the fact that these form successive coefficients of a
binomial expansion. In the expansion of (1 4- 1)* every term is of the form *C, . 17 . 1"*-*, and
171" =1 for all values of nor . In accordance with (ix) of 1.04, we thus obtain the identity

2" = (1 4+ 1)* = "Cy + °C, +-"C,y . . . *C

7
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SeLECTION OF 1, 2, OR 3 LETTERS OUT oF 5 (a, b, ¢, d, &)

1. Without replacement

One choice Tewo choices Three choices
a b ¢ d e abh b od de abc  bed  ode
ac  bd ce i abd  bce
ad be | abe  bde
ae acd
‘ ace
‘ ade
I4+14+1-+141 d+3+2+1) ' 64+3+10
=1F, L = tF, = F,
_ | %
N\H
2. With unrestricted repetition ;;;}\ v
a b ¢ d ¢ az bb e dd ee aaa bbb r:cc".\dd?f eee
ab be od de aah  bbc c"ﬂd&f dde
e bd  ce e bbdl:}.:ce
ad  be aad  bhe\" dee
ae aae N\ > codd
A Mbee  cde
bl bed
Mabc bee  cee
« [NSabd
LN abe
s\ bdd
".:" N ace  bde
SN\ acd
\" ace  bee
) .‘\:}\ add
\\ ade
N aee
N¥/
(1+1+1+1+,Q“‘5+4+3+2+1) (15+10+6+3+1)
=1F Wl = *F, = 87,
\J
;\\

Since "C, = 1, we thierefore have

67

\'} W ﬂC} + !’lcz L LPC, =201, , (IV)
The corresponding total for repetitive choice admits of solution by (i) in 1.02, vz, :
T tun *=#6+1
z TR = z n1f = Z n-1pe
Fem]l =1 =2

Since *F, = 1 for all values of #:

=1 ¥=n+1
> F, = > o, — ]
r=1 x=l
=", —1
2. (n)
L . . . . . . (v}

!
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EXERCISE 203

1. Out of 20 male and 6 female candidates for a vacancy, what choice have we in svlecting 3 men
and 2 women ?

2. Out of a council of 42 Communists and 50 members of the Labour Party, in how many ways
is it possible to choose 2 committee consisting of 4 Labour representatives and 4 Comumunists ?

3. The residue of a platoon consists of a captain, a lieutcnant, a sergeant, and S0 other ranks,
In how many ways can the captain choose 2 party of 10, including the lieutenant and excluding himself ?

4. There are 16 candidates for admission to a society with 2 vacancies, Eacli of 7 clectors can
either vote for 2 candidates, or plump for 1. In how many ways can they give thedf Yotes ?
B. A shop window exhibits 28 hats for sale. What choice has a purcha\é(:‘r'}\'ho may buy any or
all of them ? .
N
8. In how many ways can 2 book stalls divide between them 200k0pics of a time-table, 350 of a

o
7

cookery book, 150 of the current issue of Time, and 100 copics of the\New Statesman and Nation ?

7. How many hands of different make-up w.r.t. suit along’ can a bridge player get from a full
card pack ? \

8. How many possible scores of a single throw of e exceed 57

_ S 3

9. In how many ways, regardless of order,. isbit possible to choose from a full pack 3 different

picture cards : (a) if one replaces each card chgsen before taking another; () if one takes up 3 cards
simultaneously ? "

74\

10. In how many ways, regard@sgef’ order, is it possible to select from the digits 1 to 9 inclusive
2 like or unlike numbers whose sumyis 6 ?

A

204 THE SEMANTICS OF CLASSIFIED CHOICE

We have scen (2.01)@:&\1: we are entitled to impose on a universe of choice any class structure
at will. Thus wewmay classify ali the different cards in a full pack of 52 : (a) as members of
different suits BY as picture cards and others » {¢) as kings, queens, knaves, aces and others. As
there stated, Ein\e only restriction relevant to enumeration in this context is that a manageable
classification must be exhaustive and cxclusive in the sense that

(i) items of a given class all possess some attribute 4, that members of other classes do
not possess ;

(1i) every item in the universe is assignable to one or other of the m classes among which
we distribute them,

In accordance with the particular class structure we impose on the items, we can also classify
samples or arrangements. For instance, we may group samples of 5 from a full pack in 6 classes
according as they contain 0, 1, . . . 5spades, or we can divide them into 2 classes which respec-
tively contain 7o spades and at least one spade,

We can speak of such a classification as exclusive with respect to the class structure assigned,
only if the number of classes covers a| possible numerical specifications of component items
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distinguished by the classes to which they belong, For instance, a sui? classification of 2-fold
samples from a full pack is exclusive, if it specifies 10 classes to distinguish samples of

2 spades 1 spade, 1 heart I heart, 1 club

2 hearts 1 spade, 1 diamond 1 diameond, 1 club
2 diamonds I'spade, 1 ciub - - - - . _

2 clubs 1 heart, 1diamond =~ — - - — _

Any one of the above classes of samples includes many different samples in the sense that indi-
vidual items are distinguishablc by criteria other than the possession of a relevant class attribute,
For instance, the class of samples made up of 2 spades, include inter alia : (@) thesace and the
king, (8) the seven and the ten, {¢) the knave and the three. .

Enumeration of classified samples may thus involve classification at two.different levels :
enumeration of classes of samples and enumeration of samples which make up class. 'That is to
say, we have to distinguish between two types of problem : P\

(a)” enumeration of samples (combinations) or ordered wags\ef extracting samples (per-

mutations) consistent with a specification of the number™\yf ¥tems of each class represented
therein, ¢.g. how many different samples of 10 cards'ef how many arrangements of 10
cards we can extract from a full pack of 52 subject % the condition that 3 of the cards
chosen must be spades, 4 must be Aearts, 2 mastbe diamonds and one a clud.

(b) exhaustive enumeration of classes of samplésr of arrangements consistent with a classi-
fication which assigns

(i) all samples to the same class™if they contain the same number # of items of
class 4, the same numb{r ¢ items of class B, etc. ;

(ii) all arrangements toghe'same class if we assign to every rank in one arrangement
an item which bglongs to the same class as the item assigned to the corre-
sponding rank iQ'any other.

How many classes of ZTIQM' samples are extractable from a full pack, if we specify a class by
the number of cards allol{é\teﬁ to each suit represented in it is an example of a problem defined
by (5). 'We have sceg'that the answer is 10. How many different 2-fold samples make up the
class of samples distifjguished by the fact that both the constituent cards are spades i8 an cxample
of guestions beloriging to the alternative type (4). The number of 2-fold samples consistent
with the limitatiol that both cards must be spades is the number of 2-fold samples of 13 items.
If choice excludes repetition, this is 15C, = 18'® = 2. If the sample must consist of 1 spade
with 1 of the I3 clubs, it may contain any one of 13. 13 = 169 samples, More generally, we
may suppose that a universe consists of 3 classes of items, 4, B, C respectively containing a, b,
¢ items, and specify a class of »-fold samples each containing » items of class 4, v of class B and

w of class C in accordance with the following schema :

Total Number of Items in the Universe n = (@ + b + ¢)

A, 4,4, .. 4 a different items of class 4

13

By, By, By . .. B, b ditto B
C, CpCy ... C, ¢ ditto C
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Number of Items in the Specified Sample (r = u 4 v + w),
when Choice s Restrictive

a¥
uofclass 4  *C, = T samples
A )
vofclass B 'C = — ditto
vl
£ .
wofclass C  °C, = — ditto
w!

Any of the ®°C, samples of class 4 can be associated with any of the *C samplés of class B or
the °C,, samples of class C. Hence the total number of different samples is

€ N\
at®ipte) 0 o\ ° _
"C,0C,C, = ——— . . Y .
oo e ul vl ! N )
Now each sample consists of » = (u + v - w) items which We can arrange in #! ways.
Hence the number of arrangements consistent with the spesifipation is

a'™ p po) y N .
r .b__ C _._]_ a ulzsm pAtd! . X . {if)
ul ol el al ol el

This is the general term of the expansion (g + .4~ €)1, If there were 4 classes the corre-
sponding expression would be the general term of the expansion (g + & + ¢ +- d)'7, and so on.

In conformity with the schema of Figs, I8 and 19, we can arrive at this result without
recourse to preliminary enumeration of the “torresponding combinations ; and we can then
visualise the derivation of (ii) by a differeftroute.  If items of the same class were indistinguish-

able, the number of recognisable permutations in an r-fold sample containing % items of class
A4, v of class B, etc., would be as given by (iii) in 2.02, viz, ;

A\ 7l
N ul vl el . |,
O\Y
Corresponding to any pla}s“X of permutations deemed to be unrecognisable apart in this context
there are in fact ! Permutations attributable to picking u out of the a items of class 4. If we
recognise as disti(lciz‘:the items of class A4, the single class X dissolves into @™ distinguishable
classes. In ead\o\f these classes v items of class B are disposable in 4 ways. If we distinguish
items of class B inter se, our single class X therefore resolves itself into g™ . 5'*) classes. If we
distinguish all items within any class, the single class X becomes a™5®e® . . . classes. To
get the total number of clasges specified as above we have to multiply this product by the number
of classes of which X is the type specimen. 'The result is, therefore, as given above :

¥l

— ] a'®) pe) gy
wolw |,

If repetitive choice is admissible (i) above no longer holds. The number of %-fold samples
which we can then get by taking items of class A4 is “F, in accordance with (i} in 2.03 ; and the
total number of samples consistent with the class specification is

F, B, op, = @D Gt o~ ) (et 1y
¢ ul o! 0!

(iii)
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Regardless of order, we may thus distinguish the following number of ways in which we
may record the 6-fold toss of a cubical die if we specify that each of three faces turned
uppermost carries less than three pips, each of two more than two and less than six, the
remaining face uppermost being itself a six:

2+3—1)® B4+2—1)® (1 +1-—1)D
31 ' 9) ' il

The samples defined by (iii) are not necessarily composed of items of which no two are the
same, as we presuppose if we assign 7! to the number of arrangements per sample. So we
cannot derive the corresponding expression for (ii) by making use of {iii). We have to proceed
by the alternative method, making use of (iii) in 2.02, that is to say, we suppose that all the u
items of class 4 in the sample are initially indistinguishable, as are also all the @hitems of class B,
or the w items of class C. In the customary jargon, this is equivalent to safing that the number
of recognisable arrangements is that of # objects of which u are alike of one Kind, # of a second
and e of a third, ie. )

=4.6.1=24.

W

r! ™

ul ol w! R4
Let us now take stock of the fact that individual items of a cldss are in fact different. In accord-
ance with (i1) of 2.02, we can order the a items of class ’A%’each such arrangement in ¢* ways,
the b items of class B in b* ways and the ¢ items of class\C'in ¢® ways. Hence the total number
of arrangements is | OO
AT (iv)
ul ol 2" ’ ) ' ' ' ’

This is the general term of the expansiqn‘(d'-i— b -+ ¢)r. It needs no further discussion to see
how we can generalise it for any numbet of classes.

Expressions (ii) and (iv), rarely)cited in text-books, are entitled to rank as the two
Fundamental theorems of mathemativgh probability, respectively expressing in how many ways we
can extract a sample specified Oy the numbers of items of each class represented therein in
accordance with one or other6f two postulates :

(@) restrictive choi'ce;}.e. sampling from one and the same universe successively without
replacemengo\\i\ simultaneously therefrom ;

(b) repetitive ehoice, i.e. taking one item of an r-fold sample from each of 7 universes or
succqs\si\'«"é sampling from one and the same universe with replacement,

**k* WeHave now met with the coefficient of a particular term of a multinomial expansion in
(i) of 2,02 and with the general term of the multinomial expansion for factorial or ordinary
exponents in (i) and (iv) above. The enumeration of classes of samples or classes of ways of
extracting a sample introduces us to another genus of problems w.r.t. which the multinomial
expansion has a special significance. An examination of this problem leads to a more general
treatment of which the elementary theorems of choice in 2.02 and 2.03 appear as special cases.
To clarify the issue, it will be profitable to retrace our steps. Consider the choice of 10 items
out of 100 of which
a = 20 belong to class 4 ¢ = 25 belong to class C
=15 ” 1 B d =30 » ”» D
¢ = 10 belong to class &

*dkk Omit on first reading,
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one is 2 heart and one“a}iiamond. o 1363 13 gm
\'\‘ 4 211t

N

One such class of samples is thp;ciéés which consists of 3 items of class A,20f B, 1 of Dand
4of E. 'We may set out the.{geciﬁcation of this class of samples as follows :

Class O~ A B C D E
No. of z'temqé:%sen 3 2 0 1 4
No. of ftgzzﬁ;"z'n each class of the universe a b ¢ d e

The number of@-‘zt:y"s (arrangements) of extracting all samples of this class we have scen to be

10!
(a) 3101011141 & 0% ¢ dW e non-yepetitive choice.

10!
(B 3T3TOTII A a® b% ¢ d' et repetitive choice,

The above expressions, respectively being terms of the expansions (a + & -+ ¢ + d 4 €)' and
(@+bt+c+d+ e)!°, each consist of twa parts, a cocfficient involving the factorials 101, 31, 21, 4!
and an efficient involving powers of ¢, b, . . . e. The indices of the efficient add up to 10, as
do the number of items chosen to make up a sample, and the index of each co mponent a, b, etc.,
is numerically equivalent to the number of items chosen from the corresponding class. With
due regard to a proviso stated below, there is thereforce one term of the multinomial expansion,
and one term only, corresponding to any specification of 2 class of samples in conformity with
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TF1e. 19.  Different ways of taking from a fullﬁpécl% ‘2 sample of five cards of which three are spades
and two are”héarts. 8 L5363, 1308,
) 3121
S

the class structure of the universe )and there is likewise a unique specification which corre-
sponds to each term, In other Wx)rds the enumeration of all classes of r-fold samples taken from
a universe consisting of m clagsés)s equivalent to the enumeration of the terms of the rth power
of a multinomial of m basictetms.

If choice is repetztwe;t}ns means that the number of classes of r-fold samples which we can
extract from a universe Gf n items assigned to m classes is the function defined by (v) in 1.07 as

\\ ™ (r +m — 1)im1
A P
(rt+m—1) . . . . @

= (m — 1) 1!

Bo far we have discussed classified choice without reference to unclassified choice ; but it
Is possible to bring both within the same framework by recognising that our unclassified un%verse
is merely a universe in which every item is in a class of its own. That is to say, we call a universe
unclassified if the number of classes and the number of items is the same (n = ). By this
substitution we can therefore adapt (v) to cover the enumeration of samples in a untverse of
unlike things, wiz. :
(rr—DE )

S = =i
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This agrees with the formula already detived in (i) of 2.08. If 7 — 7 this redices to the
particular form of (iii) in 2.03 :

2n — 1) ..
nSﬂ=(Ln_:_1)_!);1 . . . . . - (vid)

Simultaneous selection from a single universe or successive selection without replacement
excludes choice of samples of which the number of items of a given cluss excceds the
number of corresponding items in the universe itself. Restrictive choice, so defined, therefore
implies that u cannot exceed 4, » cannot exceed b, w cannot exceed cand so on.  In the expan-
sion of the multinomial for a factorial exponent any term vanishes if u# cxceeds @, © exceeds b,
etc., in the efficient a® d® ¢, | | If the choice of the same item a secor time is not
permissible, the number of classes of samples therefore corresponds to the ndmber of residual .

terms of the appropriate multinomial expansion in factorial powers. That js 10 say, the number
of classes is given by AN
mS{ﬂ . . . Tha . . . (Viii)

Provided that 7 does not exceed a, b, ¢, etc., the result given by f(v) above holds good since
"8, = ™8, for values of r consistent with this limitation. 'Theésnumerical evaluation of "8
depends on the nature of the case, as set forth in 1.09 aboveyYand we proceed in accordance
with one or other method of 1.09 with due regard to its;sélevance.

If all the items are unlike {(m = n), each class of iteths"consists of one member. When this
i8 so the appropriate expansion is (1+1+41... #germs)”. By (vii) in 1.09 we then have

Nl
" Sy = Ty

rin —rl

=", . . . . . . . . (ix)

Thus the expression cited in 2.03 (i)ds'a particular case of a more general expression for the
enumeration of classes of samples. N\

The expressions cited for regtifetive and repetitive choice in (i) and (i) of 2.02 respectively
correspond to the sum of thévterms of (1 +1 41 . . . to n terms)Pand (1 -1 1. .. to
# terms)", i.e. nt" and rQ"thcn n = r these respectively become ! and n» ***%

O

N,
&

~O EXERCISE 204

L Out of a full pack how many difierent selections of 5 cards, irrespective of order, is it possible
to make subject to the condition that 3 are diamonds : (a) if the player replaces each card before drawing
another ; (3) if the player draws all 5 cards together ?

) 2. How many d‘iﬁcrent 4-fold samples distinguished by order, if respectively extracted with and
without replacement, is it possible to draw from a full pack if 2 are clubs, and 1 is a heart ?

3. Hov..r many different samples of 6 cards distinguished by order of choice are obtainable from
a full pack with and without replacement if : (a) 4 are spades, 1 a heart and 1 a club; () 3 are clubs,
2 are diamonds and 1 a spade ; (¢) 3 are hearts and 3 are diamonds ?

] q, Specify the number of selections, irrespective of order, consistent with the conditions stated
in {3) above,
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5. An urn contains 5 red balls, 3 black, 2 green, 4 blue and 1 yellow one. No two balls of a2
colour are of the same size. A player extracts 6 balls, find out : (@) how many selections, distinguish-
able by size alone, are possible if he draws the balls without replacing them, subject to the condition
that 2 balls chosen are red, 3 blue and 1 green ; (3) how many samples, distinguished by size and order,
are possible if he replaces each ball drawn before selecting the next, subject to the condition that 4 are
red, 1 yellow and 1 blue.

6. In a triple toss of a die, how many ways are there of getting a score of 2 aces and a six ?
7. In a 6-fold toss of a die, how many ways are there of obtaining 2 sixes, 3 fours and 1 two ?

8. In how many ways is it possible to place 3 black and 2 white draughts on a board ?
8. In how many ways is it possible to have on 2 chessboard at the end of.\a'.’?ga\fne both kings, a
white queen, 2 black knights, 3 black pawns and 1 white one ? « M

el
77%&
S

10. In how many ways can one choose with replacement 5 out gfiIO tickets with consecutive
rumbers from 1 to 10, so that no ticket carries a number higher than{3y»

N
2.05 PROPORTIONATE/CHOICE

Mathematicians and statisticians do not all agree € use the same definition of mathematical
probability. Broadly speaking, two classes of such\definitions are current. One, which is purely
formal and is open to the criticism that it haswip obvious nor indeed necessary connection with
the sort of judgment implied in stating that\an event is more or less probable, rests on the ratio
of the number of ways of taking a sample of specified composition to the number of ways'of
extracting all samples of the same $iZe™from the same universe or universes. 'The other in-
volves an empirical notion concerging'the frequency of an occurrence and suffers as such from
the fact that the empirical contént has no very obvious nor indeed necessary rela}tton to the
calcuius invoked to deal with.it.> In so far as objection to the formal type of definition rests on
the associations of the word.it$elf, we can cut the Gordian knot at this stage by renaming the
ratic specified by a pure%i“fbrmal definition, leaving for subsequent discussion its relffvance to
factual judgments as ai}jissue for decision on the merits of the individual case. Accordingly, we
shall here define 2 £2tib to which we shall apply the emotively neutral but sufficiently suggestive
epithet electivith, o choosability if the reader prefers a less pretentious expression. Our definition
will be as follows : the electivity of extracting an Y-fold sample of a specified class from one or more
universes is the ratio of the number of different ways of extracting such a sample {0 the number of
different ways of extracting all possible x-fold samples from the same universe or universes.

To leave no ambiguity about this definition it will be useful to restate considerations already

advanced in 2.01, viz. :

(a) Different ways of extracting a sample of specified compositi?m signifies in this context
the total number of linear arrangements of the constituent items of each sample con-
sistent with their specification ;

(8) for the purpose of specifying the number of samples in the relevant class we regard
every item of one and the same universe as distinguishable from any other ; -

(c) whether the extraction of the sample is consistent with repzetz'tz've or restrictive choice
remains open for decision on the merits of the choice prescribed ;
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(d) the words sample, choice and ftem in this context are open to the widest possible inter-
pretation in so far as any possible occurrence constitutes an act of choice ; a this context,
any numcrically specified event is a sample or a class of samples of the hehaviour of the
universe and any numerically specifiable attribute is a relevant item.

In accordance with (d) we can speak of three tosses of a coin as a 3-fold sample, heads and
tails being the items of a 2-fold universe, As stated in 2.01, the act of tossing a coin three times
comes under the heading of repetitive choice, since the same item may turn up again and again.
We can identify such an experiment or #rial with either one act of choice from cacl of three
identical 2-fold universes or the extraction of one 3-fold sample from a single 2-10ld universe,
If the latter, our sample is the record of a process of scoring equivalent to replacing each item
before choosing another. 1In any case, we can extract only four different samples distingnished
by their constituent items :

(i) 8 heads 0 tails R\,
(ii) 2 heads 1 tail O
(ii1) 1 head 2 tails ‘A

(iv) 0 heads 3 tails &O

Each of these samples (or events) has its characteristic elccti\-‘it'y.’ All possible linew sequences
consistent with repetitive choice of three items from a 2-foldamiverse are 2. 2.2 . - § iy accord-
ance with (ii) of 2.02. If the specified sample is 2 hebds and 1 tail, the number of different
possible arrangements is in accordance with (iv) of 2,04/ i.c.

31\
o i,
Hence the electivity of the sample is the ratio* 3,

Though electivity defined as above{Cerresponds to mathematical probability as deflned by
many writcrs, it has no necessary ¢ nnection with our expectation of the proportionate frequency
of such a result in a large number,of' 8-fold tosses. Tt relies merely on the fact that a peany has
two different faces : one head,on€ tail. 'This does not entail the assertion that a penny will
come down heads about as offedt’as tails in a large number of single tosses. Nor docs the truth
of the last assertion necessatily entail the consequence that the proportion of tosses of two heads

and one tail in 1 large hganber of triple tosses would be about §.  With suitable regulation of

the electric current, atifon penny with faces of opposite polarity tossed in an alternating mag-
netic field could bednduced to fall

6] heads and tails alternately, and hence approximately as often
one as the othef™\Mn a triple sequence, it would come down two heads and one tail or one head

and two tails, Mn the long run the proportionate frequency of either occurrence would be
about %,

At this stage we shall not examine the circumstances in which the assi gnment of a numerical

value for the electivity of an event has more or less relevance to judgments about the frequency
with which it occurs. The student of probability will approach such decisions with less effort
if we do not blur the issues involved by preoccupation with algebraic manipulations essential to
legl‘g.lma.te applications of the calculus of choice. 'We can best do this b y first acquiring sufficient
fanuliar;ty and facility with the more elementary mathematical techniques,

 Enpassant we fuay pause fo comment on a conundrum commonly cited and often with a
view to reinforcing the reputation of the proponent for mathematical sagacity. The form it
!:akes 1s a statement and question such us the following : 1 toss a penny ten times and find that
It comes down heads each time. What is the probability that it will come down heads next
time ¢ Retailers of thig hardy perennial customarily assume that the correct answer is &, because
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the mathematical probability (i.e. electivity) of the single trial is 3 ; but the relevance of this
ratio to the behaviour of a penny is less than that of our information about its history, and the
only knowledge we have about the history of the penny in question leads us to doubt whether
it is relevant to its behaviour. Hence the only reasonable answer to the question itself is suspense
of judgment.

The distinction emphasised in the foregoing remarks may serve to Justify the extended use
of the term sample in preference to event or trial. The word trial suggests an experiment to
test a rule, and event suggests an occurrence in conformity with some natural law peculiar to
a particular class of phenomena. In as much as the mathematical treatment of probability has
iz3 basis in the caleulus of choice it is applicable to such aspects of occurrences as do not conform
to natural laws peculiar to phenomena of a particular class. Indeed, we apply it with greatest
zssurance when we use it as a yardstick of neutrality to answer questions involving the putative
existenice of a law applicable to particular events. We say that a result might\be due to pure
chance, meaning merely that it is not certainly duc to a particular conditipf.dssociated with its
occurrence ; and pure chance in this context merely means laws of chdice unrelated to the
behaviour of any particular class of phenomena. A\

For purposcs of a unit sample (single event or 1-fold trial) it ig\bftén convenient to divide
items into two classes in as much as we score the choice of one asa.success, the other as a Sailure.
ff the » items of a2 universe contain s of the first class and flefRthe sceond, there are s out of »
ways of drawing a unit sample labelled a success and f out,ol’z ways of drawing a unit sample
iabelled a failure. Accordingly, the electivity (p) of a su€cess at a single trial is

S

s s
E_s—f—f
The electivity (g) of a failure is N
foof _K3D=s_,_ s
n s—l—fim’\ s+ F s+f

Ap=1—g . . . ..

This relation is of fundamental3nportance.

In common parlance, 3afpf)ﬁng from a single universe usually implies restrictive choice as
dedined above ; but sampliilg which permits repetitive choice is amenable to more elementary
methods and the resyltsMdre adaptable to the consideration of simultaneous sampling or suc-
cessive sampling wz'fﬁout replacement. We shall therefore start with repefitive sampling, and
confine our discyssion to sampling from a single universe. ‘

With thig(restriction all possible ways of choosing an #-fold sample fm{n an n-fold universe
are given by ?(}) in 2.02, i.e. »"; and the number of possible ways of getting an r-fold sample
consisting of x successes and (r — «) failures is given by (iv) in 2.04, viz. :

7!

@ froe,

xly — xl

Hence the electivity E,, . , _, of the prescribed #-fold sample containing x successes is

7l 5 froe 7! & froe
e T
7! s .
R S ) g’ . . . . (i1)

xtfr — =
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Thus the electivity of x successes in an r-fold sample is the general term of which the exponent
of p is x in the expansion of the binomial {(p + ¢)*. Accordingly we may write for the case of a
4-fold sample

No. of Successes

4 Epo=p!

3 E,,=4p%q
2 Ez-z =6 P2 gz
1 Ey=4pg*

0 Eyy=qt

As an example let us evaluate the electivities of extracting () 3 picture cards, (&) no picture cards
among § cards successively taken from a full pack on the assumption that we replace each card
taken before drawing another. In this context, choice of a picture card congtitutes a success.

There are 52 cards of which 12 are picture cards, hence A\
| 123 AN
= 5—2 = -1—3 ’ ‘ ‘ \,
PR [ 0\
Sg=1l=p= 13" \

5
The appropriate binomial is therefore (% + —}g) ; and its,peneral term is

51 ZACEN 0\
(@) Eyp = L (33—)3 (19)2 _ 2o
3121 \13 13 371293
. and

CHI0Ns 100000
Egss) = omns .
@ RN CS) 371293
As an alternative example we m\ﬁ)}'éomider the electivity of getting 5 heads and 1 tail in 8 tosses

of acoin. In the nature of theease, the process of sampling is repetitive, and p = § == ¢. The
appropriate binomial is (3~444)°. If we call heads successes, the required ratio (Ey ;) is

O 8! (1)5 (I)L 6 3
AN 5111\2/ \2/ " 61 32"

N \ oo 4
The electivity of 3 run of 10 heads in succession is Ey. ole.

(1 10 1
)~ o

Let us now impose the restriction that repetitive choice of the same item is nof permissible.
To emphasise the distinction we shall use Eiz .y instead of E, ,_, for the electivity of x suc~
cesses. By (i) in 2.02, all ways of choosing an r-fold sample from an #n-fold universe are »'".
By (i) in 2.04 the number of ways of extracting an r-fold sample containing x successes and
{r — x) failures is

rl

—_— . g7} {r—2z)
Py ey IRV AR
¥l @) Fir=u)
S By = =7 Coe e ()

xl (r — x)! nte)
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If choice is restrictive, the electivity of x successes in an r-fold sample from an »-fold universe
is therefore the ratio of the general term containing the factor s in the expansion of the Jactorial
binomial (s + )" to the continued product n».

'The relation between (i) and (iii) will be more clear when we have studied their derivation
with the help of visual models, as below. Meanwhile, let us notice an important difference.
I choice is repetitive, the electivity of a sample does 7ot depend on the number of items in the
universe. If choice is restrictive, the size of the universe appears explicitly in the appropriate
expression. For exemplary purposes we may now repeat the last card pack example on the
assumption that we either draw 5 cards at once or singly without replacing them. In accord-
ance with (iii) above

51 128 402 55

Bon =35 —mw  ~g3- A
£ _40® 2109 .
(0-5} 252?3:8—%- O\

"\

What we usually mean by sampling in statistical theory is de facto_xéstrictive. Accordingly,
(i) above has a wider application than (ii), though most elementary ‘text-books of statistics
employ (ii) extensively, even when the nature of the process necessafily excludes replacement. As
stated more fully in 2.01, a justification for this is that it is oftennlagitimate to consider the universe
of statistics as indefinitely large and 7 as small by comparison,\ When this is so, the error involved
in putting s = s7, f = f* and ' = u* is small. By ‘these substitutions (iii) becomes (ii),
and (if) is therefore a good approximation. None theéss, it is important to remember that it is
at best an approximation and not always a good approximation, if the universe is explicitly finite,
as is 2 human population, and the sample itself awizeable fraction of the whole. It is therefore
instructive to study the 4-fold sample distributions of Fig. 28 and to compare the values of E,
and E with those of By and Ey, for the card ‘pack samples above. In our notation

Ea.g = 0'072?"6’\. - E(3'2} —_ 0'%60 . ..
EO’S :0'26&\ '; . E[D"‘S} :0'253 L

It is often possible to reduce ¢H& mathematical formulation of a statistical problem to a two-fold
choice in accordance with theclassification of items as successes or failures. So far we have
considered the evaluationgf the electivity of a specified sample or class of samples from this
point of view ; but theré\s nothing in its definition to justify this limitation. The two distribu-
tions respectively defined by the expansions (p - ¢)* and {s + f)( -= n{" are each pi.lr‘tICL'llal' cases
of a more general@armulation. It will suffice to illustrate these more general multinomial tEllStrI-
butions by reférence to a 3-fold classification of the items of the universe. Our model universe
will be a full card pack. The problem is to assign the electivity of a 8-fold sample containing
one ace, two picture cards and three other cards which are not A, K, Q, J. Thus the classes
relevant to our choice will be

() aces of any suit; _
(8) picture cards of any suit;
{¢) cards with 2-10 pips inclusive.

We shall denote the number of cards in each class by a, b, ¢ as above, so that a=4, b=12, c=36
and n =52. In accordance with the conventions adopted previously ¥ =1, 2 =2, w =3,
We may denote the electivity of a repetitive choice of the specified class of samples by £, , ,
and that of a restrictive choice by Ey; ,.5. Accordingly we have
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(i) with replacement
r! at b e
E“""w:u!viw! nr

Lo NO N R

If we denote the fractions afn, bfn, c/n respectively corresponding to the clectivity of a single
choice of items of each of the three classes by p, g, s,

r!

3% T A0

= 57,
wetewo oyl gl ! Py

O\
This is the general term of the expansion (p + ¢ + s)". For the above prn'hlsm Py = e
£ Nt

g = 1% and s == &, so that K

woran (1) () (9)3—39366Q.sf""
Biea = a3 E) 13/ \13/ — 4826709 °

. 010$2\.(appmx‘)
(ii) evithout replacement AN

’l apeicey 0 .
Boeoo =Tl —m — 20 v

8! 412,86 396

Eyoan =150 o = ao77

11213] 52 4277

D = 0094 (approx.)

EXERCISE 205

1. In a normal family of 7' children (expected sex ratio 1: 1) what is the chance that there will
be: (a) at least 1 boy ; (3) exaetly’S girls ?

2. In a normal famiI}\J“f 10 sibs what is the chance that : (a) all will be girls; (%) cxactly 8 will
be girls ; (¢) at least 1 will be a girl ?
" 4 u\' )

m\J .
3. Whatis th‘:chance of scoring at least one double six in 4 tosscs of a die ?

4. In a deal of 5 cards from a full pack what are the chances of getting : (a) at least 1 ace; {(5)
4 tens and a picture card ?

8. In a deal of 8 cards from a full pack what are the chances of getting : (a) no ace; (b) no black
card ; {¢) no picture card ?

6. In a deal of 10 cards from a full pack what are the chances of getting : (@) at least 1 black
card ; (8) at least 1 queen; (¢) 4 queens, 3 aces and any 2 other cards ?

7. What are the chances of getting 5 picture cards and 2 aces in a full hand at whist >

8. 'What is the chance that a full hand at whist will contain neither a picture card nor an ace ?
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9. Tf I empty out 5 balls from an urn containing 10 red, 5 black and 15 white ones, what is the
chance that : (2} 3 will be red, 1 black and 1 white; (5) 3 will be white, 1 black and 1 red; (¢) 3 will
be black and 2 will be white ?

10. One purse contains 5 half-crowns and 4 shillings; another contains 3 half-crowns and 3
shillings. One purse is taken at random and a coin drawn out. What is the chance that it will be a
half-crown ?

206 TuE Turer FUNDAMENTAL RULES oF ELECTIVITY

The distributions defined by (ii)-(v) in 2.05 are deducible from rules which -afé\themselves
deducible from the chesshoard set-up (Figs. 20-21) for specification of diffetent ways of
extracting a sample without recourse to (ii} and (iv) in 2.04. It will be, co‘nvement to state
the first two with respect to samples of 2, and to extend them to larger samp{es when their mean-
ing is clear. «

1. The Product Rule. If the electivity of the choice of a single ifem of class 4 from one
universe is p, and the electivity of the choice of a single item of cla$s¥B from a second universe is
P the electivity of getting an item of class A4 from the first and @ Jtem of class B from the second
in a double draw is p, . p,.

2. The Addition Rule. 'The electlvlty of a class of san}ples is the sum of the electivities of
its constituent sub-classes, with the proviso that the specification of the latter is exclusive as
defined in 2.04.  Since the definition of electivity of aglass implies its proportionate contribution
to the whole, the addition rule signifies that the electmtlcs of all the sets of an exclusive classifi-
cation are together equal to unity. N

3. The Negation Rule. The total absence of an item of a given class 4 and the presence
of at least one item of the same class respbctwely define two sub-classes of samples of a 2-fold
exhaustive and exclusive specifications {Meénce the sum of their electivities is unity. If a is the
electivity of an r-fold sample contam\g at least one member of class 4 and b is the electivity
of an r-fold sample containing n@mmembers of class 4, a = (1 — &).

It is important to notice that the product rule, as stated above, applies to simultaneous
extraction of 1-fold samples.f ,fr}m different universes. So stated the rule signifies the result of
taking an item of class AMrom Universe I and an item of class B from Universe IX; and it
implies nothing about ghe\proportion of items of class 4 in Universe IT or of class B in Universe I.
We can extend itg apphcatlon to sampling from one and the same universe, if we regard the
single universe 4§ donstituted at our first choice as Universe I and the universe as constituted
at our second choice as Universe I ; but an exclusive and exhaustive specification of our choice
then compels us to distinguish between : (4) choosing first an item of class A4, then an item
of class B; (&) choosing first an item of class B, then an item of class 4. With replacement,
the electivity of either event is p,p,. In accordance with the addition rule the electivity of
a 2-fold sample consisting of one item of class A and one item of class B is then p g, + pup,
= 2p,ps. On the other hand, the electivity of getting a 2-fold sample consisting of two items
belonging to the same class is that of a single act of choice, since we can choose two members
of class A in succession only by first extracting an item of class 4 and then again extracting
an item of class 4. If we put back the item first chosen, the proportion (p,) of items
of class A in the residual universe is the same as before, and the electivity of the event is
Ps®. The same is true if our sample is merely the record of an occurrence which may recur
indefinitely often, as when we score the result of tossing a die.

6
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If the product rule is true, the electivity of getting 2 heads with a double toss of 4 coln, or a
single toss of 2 coins, is therefore ()% because the electivity of a head in a single toss is 3, and the
electivity of getting 2 heads is that of getting a head at the first toss and a head at the seeond.
This is consistent with (ii) in 2.05. The appropriate binemial is {£ - 4% whenee

Ez.o == (1})2 E!.l =2(4)* Ey y-- (5)2

The value assigned to the electivity of getting a different result from successive tosses illustrates
both rules. 'The class of samples composed of a head and z tail may be cither of two sih-classes :
(a} first a head, then a tail ; (&) first a tail, then a head. If rule (1) 18 true, the electivity of either
is (3)* and if rule (ii) is correct, the electivity (£, ,) of the class which specifies efther one or the
other exclusively is the sum of their separate electivities, Le. (4)* - (1)* = 2(H3

A 3-fold successive draw with replacement from a full pack of cards provides an Hlustration
of the extension of the rule. The electivity of a heart at a single draw is i Alntaccordance with
the extended product rule, the electivity of a run of 3 hearts is therefore fthatof getting a heart
from each of 3 packs (4, B, C)at a single draw, ie. } x } x t. 'TI'heappropriate binomial is
(1 + )%, whence Es0=(})". The choice of 2 hearts and a card ©fanother suit in a 3-fold
draw of this sort defines a class of samples which we can divide nto’3 sub-classes, according as
we draw one or other card of a given suit from one or other pack 4, B, C. If the 3-fold sample
contains 2 hearts, the extraction of a heart from 1 pack entai@ the extraction of 2 card of another
suit from either of the remaining 2 packs. Hence we caQ dnake up our sample in only 3 ways,

as below, O
4 B G\
Heart Heart Qther i i =03
Heart Other ¢ }:Héart - i-b=0 @
Other Heart S Heart 1. :=02
,\ - UNIVERSE !

UNIVERSE 2.

ok 4 4

Fic. 20. All possible ways of simultaneo




THE CALCULUS OF CHOICE 83

UNIVERSE |,

& & 9 v ®
06 (06 6% 4% |#©

o
S 0[00 00]0e 09 00
I

o jvejvplovive [ve N

L o
H

L
+ A\
[ ] L
o ’ % 9 x&'
o 2 2.8 [eala_a
E 4 5 20 N 5 X
g ' )
£ v: L 4 ” 1 9@,
. RN S 1

ny

Fig. 21, 'The balance sheet of Kig. 20, when our concern is with suit alone.

From the binomial formula, the el ﬁi\?ity of the specified class as a whole is E, ; = 3(1)2. (}),
and this is equal to the sum of\the electivities assigned to the sub-classes as in the table
above. "

More generally, we mag( regard an r-fold sample as a super-sample made up of r samples
of 1 item only, or alternatively as a super-sample made up of 2 samples, one containing 1 item
only, the other containing {r — 1) items. In this way we see that the product and addition rules
extend to samples ofyany kind. If p, ¢, 7, s refer respectively to the electivities of classes A4,
B, C, Data siugléﬂfaw, the clectivity of a sample made up of x items of class A4, y of class B,
2 of class € atd B of class D in that order is thercfore

rers=pgr

From the standpoint of our third rule we may regard the double toss of a die or the simultaneocus
toss of 2 dice as a sample divisible into 2 exclusive classes, according as

(i) @t least one face turned up is a six ;
(ii) meither face turned up is a six.

By the product rule the electivity of (ii) is

(5)2_25
6/ 36"
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The negation rule states that the electivity of the alternate sample (1) is

2 1

36 36°
If choice is repetitive, the more general form of the negation rule states that the clectivity of
getting af least one success in an r-fold sample is

l-¢ .~ .

If choice is restrictive, the appropriate expression is

tr}
p S

R . . . S . (1)

These results have wide application in statistics. O\

In 2.02 we have seen that the chessboard device exhibits all lincat™atrangements of 2-fold
samples from one universe or from two different universes. In C(prg;;ﬁlit}-' with our definition
of p. 75, the electivity of a class of samples is therefore the ratio i thé number of pigeon holes
they occupy to the total number of pigeon holes in the chegsboard lattice. “I'he chessboard
lay-out of Figs. 20-23 shows how the three rules stated arg;detucible without reference to the
binomial formula for E, , ; and that the latter is in fact deducible from them.

Fig. 20 sets out all possible ways of extracting a 25%1d sample by taking 1 card from each
of 2 packs constituted as follows : AV

Left-hand pack (¢ cards) &V Right-hand pack (5 cards)
Ace of Spades N\ Acc of Spades
2 ditto N\ 2 ditto
3 ditto 2 Ace of Hearts
Ace of Hearts ’i“,\ 2 ditfo
X\ 3 ditto
By definition the electivities fopa“single draw from the two packs are
'\ Spades Hearts Total
From the left-hadd)pack 3 1 (- =1
From the righfehand pack 2 3 (2 3) =1

There are 20 different linear atrangements of a 2-fold sarople defined as above. For pur-
poses of classifieation by suit, we can best visualise the result, if we represent each spade by the
ace of spades and each heart by the ace of hearts, as in Fig. 21. By inspection of this figure we
see that 6 out of the 20 arrangements consist of 2 spades, 3 of 2 hearts, 9 of 2 spade from the
left pack with a heart from the right one and 2 of a heart from the left with a spade from the
right one. 'We can thus draw up a table of electivities for alternative exclusive classifications
demonstrating both the product and the addition rule as below :

!
fi=:]

Both spades

6 = 2 X 2 (Product rule).

Both hearts g% =2 x 3( w )

Spade-heart o2 ~ FxE0 » )

Heart-spade % = 1 % - G n )
Total &5 + vy + P - &5 =1
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Two cards of the same suit % == 85 + 33; (Addition rule).
Two unlike cards =%t . » )
Total -g,j —+ %%‘; =1

No spades (both hearts) 2.
At Jeast one spade 3% = 1 — & (Negation rule).
No hearts (both spades) +%.
At least one heart =10 » )
Twao like cards s
T'wo unlike cards H=1—3%( » y )

Q.
The condensed chessboard diagram of Fig. 21 summarises these results in a,way which is adapt-
able to successive application as in Fig. 24. Extracting an r-fold samplebytaking 1 card from
each of 7 packs is equivalent to taking 7 cards from 1 pack, if one replaces &ich card before picking
out another. From Fig. 24 we see that the binomial series for the electivities of 0, 1,2 . . . 7
hearts in an r-fold sample from a full pack on the assumption thatthere is replacement of each
before drawing another is a necessary consequence of applying/the two rules stated.

N
1% e ..:? —::.: NG 3 3
- s S — <3 | 3 >2
vLe E\ EI @ et
R ISR
- ! D I;’ ‘ [_' F l. 1 .l |.2 D2
3 '-J b B @' b L 3 |3'379|3°5%
SRR '&’\‘ [ -
L L8 .: L] E] D D D
L ol - S P e
E W EE B R
ol - P el e =
g8 B5m @ o ER ED OC0
y el l.l v o) z.l .-I_. 4 2 2 4
-. ;! AT N I (%) 7 2'3 %'"9‘ (3)‘6
' ; o e Fig. 23. The balance sheet of Fig, 22
. ! IE E Q e when our onI; c?};::ri isevihethelrgthe
Fig. 22,  All possible results of tossing 2 dice number of pips on one or other
simultaneously or tossing I die twice. member of the pair exceed 2.

Figs. 20-21 refer to sampling simultaneously from two universes, but the device is equally
applicable to repetitive sampling from a single universe, as illustrated by the lay-out in Figs. 22-23
for the results of a double toss of a die or single toss of two dice simultaneously. Thus we can
classify the 36 possible results as

(a) both top faces with less than 3 pips, i.e. with either 1 or 2 pips—4 out of 36 ways.
(&) only one top face with less than 3 pips—16 out of 36 ways ;
() neither top face with less than 3 pips—186 out of 36 ways,
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From the figure we thus sec that the clectivity of (@} is 4 =36 L. “I'his itself lustrates both
Product and addition rules, since the result is exclusively clusstfiable as (i) two scores of 1;
(i1} a score of 1 followed by 2; (iii) a score of 2 followed by 15 (iv) two seores of 2, The
electivity assignable to any face at a single toss is . By the product rule tha assignable to any

of these four results is (3)* =4 By the addition rule that assignable 1o the Class as a whole i
_.‘316- + '316_ -+ ':ila' Y T 515

At a single toss, the electivity assignable to getting a score of less than three, b, of getting
efther one or two, is t+3= 3. By the product rule the clectivity of getting two scores of less
than three in succession is therefore F. 40 4, inagrecment with the above,

Out of the 36 possible arrangements 16 +- 16 - 32 have at least one face Giroed up with
more than 2 pips. For 36 — 32 — 4 both faces have less than 3 pips. LR s an exclusive
2-fold classification. In accordance with the negation rule, the electivitgs'of o double toss
involving at least one score greater than 2 is "
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Fic. 2¢. The }Ilainomial law of the distribution of heart scores for choice of 2, 3 and 4 cards from a full pack as
a ches

sboard application of the addition and product rules embodied in Figs. 21 and 23.
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207 THE STAIRcASE MODEL

The chessboard diagram is applicable to simultaneous sampling from any 2 universes. Its
relevance does not presuppose that the universes are identical like the universes of a 1-fold
toss of 2 dice. Hence the product and addition rules (Figs. 21 and 23) apply to simultanecus
choice from each of 2 card packs whose composition is 7ot the same. This is important, because
it indicates a way of visnalising restrictive choice by suitable application of the same rules.
When we sample from only one universe, the chesshoard diagram refers only to repetitive
choice, i.e. to die models or to successive withdrawal from a card pack subject to replace-
ment of each card taken before extracting another. To visualise the relevance of the product
tule to the urn or card pack, if selection from a single universe is simultaneous, or if replace-
ment is otherwise excluded, a 3-dimensional device is more manageable. That ofFig. 25 refers
to a 2-fold choice without replacement from an 8-card pack made up of 1 cluby'3 hearts, and
4 diamonds. Accordingly the electivities of the choice of a club, heart or diamond at a single
N\

draw are respectively \
1,3, 1
23] 8 . < X

Let us suppose that one of the two cards chosen at a double dra:ur'fiéé club, There remain in
the pack only seven cards, 3 hearts and 4 diamonds. We may tabulate all three possibilities
with respect to the residual composition of the pack as follp\ws:

< &/
Residual Pacl'(.: )
First Choice. _ o
(A) KN
Clubs. Hearts. Diamonds. Label.

Club . . 0 \’ 3 4 B
Heart . 1 ) 2 4 C
Diamond . 1 \\ ) 3 3 D

A%/
Corresponding to each first.choice, there is 2 residual electivity w.r.t., the alternative draw, as
below : &

| :V
) F\‘irét' Choice. Residual Electivity of Second Choice.
élit. Electivity. Club. Heart. Diamond,
Club 1 0 $ 4
Heart g 3 { }
Diamond 3 % 7 T

Since each first choice determines the range of alternative cheice, we are at liberty to regard
the double draw as an cvent which takes place #n two stages. The first is the choice of a card of
any one of three suits from a pack 4. The second is the choice of a card from one of three
packs, B, C, D prescribed by the nature of the first choice. 'The choice of a club from pack 4
constitutes a ticket which entitles one to draw a card from pack B, that of a heart from pack 4
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a ticket permitting one to draw a card from pack C, and that of a di:tmm.ld fr‘om p;ufk A azticket
permitting one to draw a card from pack D. To regard th.c double draw in this wiy is cquwalcnt
to regarding any particular choice as the outcome of sampling from two universes,  Vor instance,
the choice of a heart followed by a club is equivalent to

(1} choosing a heart from pack 4.
(ii) choosing a club from pack C.

So conceived the two acts of choice are mdependent.  So the clectivities of all possible pairs
(second choice in italics) follows from the product rule for independent choice ;

X

Club—-clubd 0 =0.
Heart—club & < ksl N
Diamond—chdd 3 X ¥ = 4k
Club—heart xR o=l ,\:’\
Heart~—heare &3 O
Diamond—heart % d i N
Club—diamond I x4 _1:174 ¢
Heart—diamond 2t 3y
Diamond—diamond T x z;*\\ Py

Torar (?5% + 'J.AI + “5:16 + “233‘ “+ ‘1'34' —'r.%f:“ 8 ‘1"1‘; -} 1‘34; = 1

In accordance with the addition rule the electivitics{fdr the double draw irrespective of order

are A

-]

2 Clubs 0 Chib andheart I R
2 Hearts vy Clubagd diamond s b = L
2 Diamonds & m&eart and diamond ¢ + B =3

If choice were repetitive the corresptqi&ir’lg ratios would be
2Chbs (S & Club and heart 3.

-

A\ EY
2 Heargs' 0 w1 Club and diamond >3
2 D»{c%?;nﬁnds Y Heart and diamond 3.

Fig. 25 shows the\c%c"tivity of the second choice in accordance with the application of the
above rules when theve Is no repetition, oz, :

'\
A\ - i S
\\;" Club 0 +8%+&=1%
8 4+ 3 | 3 3
Heart & 1+ 3 id = &

In spite of the fact that the choice of a club at the first draw excludes the possibility of choos.ing
a club at the second, the electivity of a second choice is thus the same as that of a first choice.
We can generalise this conclusion for a 2-fold classification as follows, Suppose the urn model
has 2 sorts of balls the choice of which respectively score as successes and failures, the nllrﬂb}?fs
being s and f, so that 6+ f)=nand (s +/—1) =(m—1). Inaccordance with the preceding

argument, we can use the product rule to derive the following clectivities for a double draw of
which the second choice is a success :

Second choice 2 success following a success -SE—S-_—II)) .
HnH —

Second choice a success following a failure (_Sf_l)
n(n —
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The two possibilities constitute an exclusive classification of a second suceess. So we may
apply the addition rule :
(s —1) s _ss+f-D =

#n—1) "nn —1) an—1) n

For the restrictive case the distribution of a 2-fold choice from a 3-class universe shown in
Fig. 25 accords with the multinomial expansion

(143 +4)» 8,
For an r-fold choice from a 2-class universe, the corresponding binomial in facterial powers is

(s + f)i* = ni") as given by (ii) in 2.06, and is deducible by successive application of the staircase
model as shown in Fig. 26 (a, b, c). Itis often more convenient to use the alternative form :

(s + 1) = 0t = (pn + gu)n 2 po ] o\ . ()

Nore.—Fer an r-fold sample successive terms of this expansion, like those of (# + g), whenychoice is repetitive,
give the proportion of samples containing 7, (r — 1), (r—2)...8 2 1, 0 successes. _Ifidalmost always more
convenient to memorise the formula and its implication in reverse order, wiz. : successiye) terms of (¢ + p)r for
the repetitive case and (grz + p#)'! = 27! for the restrictive case respectively give t}}e,:}groportion of samples con-
taining 0, 1, 2 . . . (» — 1), r successes. A\ 3

N
SECOND CHOKE S

O : COMBINED CHOKE
O 80 80 &0 80 €0 60
A PS> @O ¢0
1 4% % %% 4

= © % ¥ o 4

B

SECOND CHOICE
& v O
oedel b &fek
- 4 ) $

Fig. 25.  All possible results of smultaneous choice of 2 cards from a 4-card pacle made up of 1 club, 3 hearts
and 4 diamonds by application of the product and addition rules embodied in Figs. 21, 23 and 24,
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EXERCISES 2.06-2.07
1. Jones had 3 shares in a lottery with 3 prizes and 6 blanks. Smith has 1 share in a second

with 1 prize and 2 blanks. Show that Jones has a better chance of winning a prize than Smith. In
what ratio ?

2. If 1 draw 4 cards from a pack, what is the chance that I draw 1 of each suit ?

3. A bag contains 5 whitc and 4 black balls. If somcone empties the bag by taking out the balls
one by one, what is the chance that the first will be white, the second black, and so on alternately ?

4. A player takes 4 cards together from a full pack. What is the chance that 1 will be an ace
and the remainder respectively a two, a three, and a four ? ~

9. A bag contains 5 red balls, 7 white balls, 4 green balls, and 3 black balls. a, If emptied one by
one, what is the chance that all the red balis shouid be drawn first, then all the Wlhte ones, then all the
green ones, and then all the black ones ? . O

6. If 9 ships out of 10 on an average return safe to port, what is the. chance that at least 3 out of
5 ships expected will make good ¢ ...\‘

7. Snooks and Jones play chess. On an average Snooks wins\3 games out of 3. Find the chance
of Snooks winning 4 games and Smith winning 2 out of thex t 6.

8. There are 10 tickets in a lottery, 5 of them numbered 1, 2, 8, 4, 5, and the other 5 blank.
What is the chance of drawmg a total score of 10 in 3 trlals {a) it the ticket drawn out is replaced at

each trial ; (3) if the ticket is not replaced ?

v.’,
NS

9. Jones and Smith play chess. In the long'run Jones wins 5 games out of 9. Find his chance
of winning a majority of {a) 9 games; (5) 3.games ; {c) 4 games.

10. In a throw of 2 dice, what is\blfe ::hance that the score will be greater than 87

11, What is the chance of thrc»wmg {(a) at least 1 ace in a double toss of a die; (&) a double
which contains neither an ace nor‘ a'six ?

12. In one throw witha parr of dice, what is the chance that: () there will be neither an ace nor
a double ; (5) the score W‘H be exactiy 11 ?

13. What msf.he chance that 4 cards taken simultaneously from a well-shuffled full pack will
contain : (a} 3 aves’; (&) 3 picture cards ; {c) at least 1 queen ?

14, What is the chance of picking the following pieces from a box of chessmen without replace-
ment: 1 white king, 2 queens, 2 black bishops, 1 white rook, a black and 2 white knights, 3 black

and 4 white pawns ?

15. What is the chance of getting all 4 aces and all 4 kings in a hand of bridge ?

208 ELEcTIVITY, OPPORTUNITY AND CHANCE

***% Before we attempt to relate what we have hitherto called electivity to what others call
probability, readers already familiar with current text-books may find it helpful to recall‘an
alternative formulation. 'The addition rule given in 2.068 is sometimes stated in the following

**%X Omit on first reading.
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way, the precise wording here given heing duc to Uspensky * (p. 27)

The probability for one of the mutnally exclusive events A, A, A, .. 1 malerialise is
the sum of the probabilities of these events.

Uspensky here uses the symbol 4, merely as a label foran iten (the xth)of aclass A, Tt has no
numerical meaning as such, For the numerical value of the probability of its occurrence, or as
we here say, its electivity, in a unit sample, he uses the bracketed symbol (A0, Any event, ie,
item of the class 4 labelled with a particular subscript is by definition an exclusive sub-class of
A; and the symbol (4) stands for the clectivity of the class A4 as a whole.  In this notation the
foregoing rule is, therefore,

(Aot As+ Ay AY = (A) 1 (A () . (A,
The same author’s formulation (p- 31) of the product rule for compound probability is sufficiently
general to include the chessboard representation as a particular case of theshairease model :

The probability of simultaneous occurrence of A and B is given byQ product of the un-

conditional probability of the event A by the conditional probabilir Y B supposing that A
actually occurred. 3

This statement merits amplification, since it does not vxplicit]_\'\sliucif}-' whether the vale applies
to either or both possible arrangements of the two items.  Witany adapt and expandd it for our
purpose, and in our own terminology, in the two folhnvingr\nropusitiuns :

{a) the electivity of a 2-fold sample containing iteiSrof one and the same class is simply
the product formed by multiplying the inigghelectivity of extractine one item of this
class from the total universe by the contingbub clectivity of extracting another item from
the residual universe : o

(8) the electivity of a 2-fold sample coptdthing items of different classes A and B is the
sum of the products respectively formed by multiplying
(1) the instial electivity of extr. Sting a single item of class 4 from the total universe by

the contingent electivity of €xtracting an item B from the residual universe ;
(11) the initial electivity, GY\}xtracting a single item of class B from the total universe
by the contingent elqeﬁiwity of extracting an item A4 from the residual universe.

For the contingent electivity“of’B from a universe out of which we have alrcady extracted an
item of class 4, Uspensl;y tises the symbol (B,4). With this notation we may write the two
forms of the product .P\s{le" thus :

W @ (44) = (4)(4,4).
~O° (0) (4B + B4) = (4)(B,4) + (B)(4.B).

Needless to say/we may extend these rules to any size of sample, c.g.

(A44) = (4AXA,4)A,44).
In the same notation, the addition an.
sentation of a 2-fold sample from a u

~

d product rules are both implicit in the binomial repre-
niverse of 2 exclusive classes :

(4+ BY4 + B) = (A)(A4,4) + (A)(B,4) + (BY4,By + (BY(B,B)=1.
If the two acts of choice are independent, i.e, if r
universes are identical : and the contingent ele
class is identical with its initial electivity, Hen

epetition is permissible, the residual and initial
ctivity of the second choice of an item of any
ce

(4,4) = (4); (B,4) = (B); (4,B) =(4); (B.B)= (B).
- A B4 + By = (4) - o(ayB) + (B = 1

* Introduction to Mathematical Probability (1937), a most useful bools,
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In these expressions (4) and (B) respectively mean the proportionate contribution of items
of class A and class B to all items of the universe. To say that the classification is exclusive

thus signifies that
(44 B)=1=(4)+ (B).

The symbels (4) and (B) in the binomial expression (4 + B) (4 4 B) above signify the elec-
tivities of I-fold samples relevant to a binary classification which is exclusive in this sense ; and
we may write the result

(4 4 B)(A4 + B) = (44) + (4B + BA) 1 (BB) = L.

In this form A4 with electivity (4A4), AB or BA with electivity (4B +- BA) = 2(4B), and BB
with electivity (BB) together constitute 3 exclusive classes of samples. For/8:fold samples of
items reducible to 2 classes, the corresponding classes of samples are : (). A4, (i) AAB or
ABA or BAA; (i) ABB or BAB or BBA; (iv) BBB. The corrésponding binomial for
association of items consistent with repetitive choice is O

(A B)YA + B)(A4 + B) "G
=1=(444)+ (AAB + ABA + BAA4) + (ABBS BAB + BBA) + (BBB,).

We have hitherto interpreted the binomial (or more géuerally, the multinomial) distribu-
tions in either form (usual or hypergeometric) given. Jabove by (ii) and (iii) in 2.05, as a
compact statement about how much the different ways of extracting all r-fold samples included
in each of a set of exclusive classes of samples respedtively contribute to all possible r-fold samples
consistent with the nature of the problem. Abgut each linear arrangement of 7 items we can
extract from the »n-fold universe or universes specified thereby, we may rightly or wrongly assert
that it belongs to a particular class of samples. If choice is ot restrictive, the proportion of
linear arrangements of 4 items consonant with a specification of 14 + 3B is then given by

(ABBB + BABB 4 BBAB -+ BBBA),
If (4) = p and (B) = g, A\
(ABBRY BABB + BBAB +- BBBA) = 4pg®. Aok

Of all 4-fold sample§ Histinguished as different in virtue of both the different items
contained in them and thc\ different lingar arrangements of the items without restriction w.r.t.
repetition, the expression 4pg® in the symbolism of 2.06 represents the proportion concerning
which one can cozfcetly assert : this sample belongs to a set of which 3 items are of class B and
1 of class 4. 'Thetproportionate frequency with which we should assign it to its correct niche
in a classificiory framework, if we always assumed that a sample belongs to a particular member
X of a set of éxclusive classes, is therefore the same as the electivity of samples which actually
belong to the particular class X. 'This is the line of thought implicit in the definition of mathe-
matical probability by those who reject any form of words involving explicit reference to the
frequency of events in favour of a statement about the frequency of making correct judgments,
Given certain data about a sample and a universe, e.g. that a sample consists of 4 items chosen
from a universe of 52 items allocated to two classes, 4 and B respectively composed of 13 and
39 items, one can propose a particular proposition about any sample extracted from such a
universe, For instance, one may propose the particular proposition that the sample consists of
1 4 and 3 Bs as above. Of all possible ways of extracting an 7-fold sample distinguished by its
individual constituent items (i.e. n" if there is restrictive choice and n* otherwise), some, let us
say s, will conform to the specification asserted by the proposition, athers (f) will not. For
instance, there are in all 52¢ ways of laying out four cards «f a full pack, if we record the result
with no restriction w.r.t. repetition and 4. 13 . 39 is the number of which we can correctly assert
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that 1 is a heart and the other 3 belong to another suit.  Of all different samples we can extract
from such a universe, the ratio s 5~ (s 4 f) therefore represents the proportion of samples
correctly specified by the proposition: this sample belongs to class A. Accordingly, some
writers identify this ratio with the probability that the proposition is correet.

So stated, the definition of probability does not go beyond what we have called the clectivity
of a sample ; but we have given no guarantee that a correct statement of this sort is 4 correct
statement about how an act of choice materialises, i.e. how often we should be correet In asserting
that a 4-fold sample selected with replacement from z full pack would contain only 1 heart.
To have operational value as a basis of judgment, the ratio we call probability must refer back
to how often we do, in fact, choose such a class of samples 3 and this is not the sume as spectfying
the numerical frequency of its occurrence among all ditferent 4-fold samples in a static universe.
When we speak of the relative frequency of making a correct judgment abudt™2 picture cards
chosen simultancously from a full pack we should therefore be clear apgut whoether we are
asserting one of two propositions between which there is no necessary ganiection ;

(a) of 52 (= 2652) different ways of arranging 2 cards from a faillpack without repetition

exactly 12 (= 132) conform to the assertion that both btj:&ll" A pietute ;

(b) results of experiments on drawing 2 cards from a fullgpilé'k justify the conclusion that

pairs of which both are picture cards and pairs of 3hith at least one number is not a
picture card turn up in the ratio 132: (2652 —A82) == 132 : 2520.

If we define appropriately what we mean by differert Ways of extracting a sample, as above,
the first statement is a logical tautology. The secopddannot always be right, if only because
the number of experiments performed limits the\possibility of getting the prescribed ratio,
The possibility of defining circumstances in wﬁie}i a connection between the two statements
does in fact exist is the only justification for\invoking mathematical probability in discussion
about cobservations on natural occurrences. ™ To employ mathematical technique as a tool of
investigation in the domain of practicalj{(dgments with which we associate the term probability
in common parlance, we have ther fare. to establish such a link. Hitherto we have interpreted
the definition of different ways‘eﬁ extracting a sample in terms of linear arrangement.
At first sight this definition may“geem arbitrary ; but the use of the chessboard or staircase
device to set forth the possiblfg,\arrangements resulting from extracting samples from different
universes or from the samg\miverse has already (p. 62} focused our attention on a property
of linear order which ishighly suggestive when we scek such a link.  We obtain a correct repre-
sentation of every pOSQible linear arrangement of 2-fold samples from a single universe by pairing
off each item of thesparent universe once and once only with each item of the residual universe ;
and the same grinciple is implicit in successive application of the chessboard or staircase pro-
cedure to evaluate the proportion of lnear arrangements of a4 given specification in samples of
more than two items. By defining the number of ways in which we can extract a sample as the
number of different linear arrangements, we thus presuppose equipartition of opportunity for
assoctation between individual items.

Though the principle of cquipartition cof opportunity for association stated in this form has
No necessary connection with the probability of making a correct judgment about the materialisa-
tion of occurrences, its recognition points the way out of a quagmire of ostensibly empirical, but
logically circular, definitions involving statements about events which are equally likely.* Whether
events do or do not occur in conformity with results derived from considerations suggested by
tl'fe algebra of choice evidently depends on the extent to which circumstances are more or less pro-
Ditious to equipartition of opportunity for association of their constituent elements. 'This suggestion

* See Aitken (Statistical Mathematics, pp. 8-11) for comments upon the unsatisfactory status of current definitions
of randomness,
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is not sufficient to lead us to the goal we have in view. For we have still to define what circum-
stances are more or less propitious or how we can make them s0, when the extraction of a sample
does not involve any prior knowledge of what items will in fact turn up. None the less, we have
now in focus what all statisticians tacitly regard as 2 paramount issue ; and we have not involved
ourselves in the vicious cycle of a definition of probability explicitly or implicitly containing the
notion of equal likelihood.  If we speak of the process of ensuring equipartition of opportunity
for association as randomisation, our problem now takes the form : in what circumstances or
with respect to what systems is randomisation practicable ? En passant, we should recognise that
randomness implicit in the term so defined is a property of a system. Only on this understanding
i1s it then appropriate to describe a single act of choice as random.

To find an answer to the question last stated we may profitably leave aside gengral considera-
tions, and direct our attention to a particular case. The intuition which is commton scnse, alias
everyday experience, leads us to hope that if we shuffle a pack of cards suflicienttly thoroughly and
sufficiently often, we shall in fact attain such equipartition of opportunity-for dssociation. We
can justify this hope with some plausibility in so far as we have reason .to suppose that the
denomination of a card in no way affects whether it will retain its position relative to another
when we mix the pack as thoroughly as we can ; butin any case We'Can put it to the test. In
80 far as the results of a very large number of such experiments show that pairs of two picture
cards and pairs of which at Icast one member has no picture irn up in a simultaneous double
draw from a full pack in the ratio 132:2520 or 1 : 19 (a r}x.), we are entitled to say that the
calculus of electivity prescribes the limiting (i.e. long rid) Walue of the relative frequency of such
an occurrence. The following table shows the resylt! (Pearson,* 1934) of counting the number
of trumps in 3400 hands (of 13 cards) of whistland corresponding clectivities calculated in
accordance with the distribution defined by the.faetorial binomial (13 + 39)1%),

N

No. of Trumps {’bbserved No. of Ditte expected to
in a Hand, {4 ™ Hands. nearest Integer.
nder 375" 1021 1016
34 Y 1788 1785
ovepd” 591 599
WO
O

To say that experiment does confirm our supposition neither restricts the usefulness of the
calculus of elecfivity to such trivial themes as evaluating the credentials of systems employed in
games of chance,"nor compels us to undertake extensive experiments on the distribution of other
classes of events to which we can usefully applyit. Given any situation to which it is applicable,
we can usc such a situation as 2 model for the construction of a hypothesis to guide our judgments
in the search for scientific laws, The justification for the use of such a model depends on what
is implicit in the principle of equipartition of opportunity for association. A scientific law draws
attention to some connection hetween the attributes of a system, e.g. the pressure of a gas and
its volume at a given temperature, or the age of 2 human being and his or her liability to contract
tuberculosis. We can often get the answer to a question about the association of two such
attributes by putting it in the alternative form : what would happen i the long run, if there
were no connection between them ? The card pack model provides us with an answer to
questions of this sort,

* Biometrika, 18, p. 172,
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Fie. 27. This modei set-up for Fisher’s Expegirﬁ‘en't exhibits ali the 70 possible ways of arranging 4 hearts and 4
spades together,

+\J

The statement that each itf;m\}f the chessboard or staircase device has an equal opp urtu;lit}'

to pair off with any other itemsofthe residual universe, is equivalent to saying that the cIenomlpa-
tion of the card or die dg@s hot affect the frequency of its association with members having
another class denomin.atjg}f. The only thing that does so, is the number of members of each
class. The electivitpof a sample—its mathematical probability—is therefore an index of
associative neutralifyor, as we might equally well say, ar

1 index of the lawlessness of the system.
In so far as thesobserved behaviour of the card pack conforms to the law of cquipartition stated
above, the cérd Pack is therefore

(@) a model for any system whose numerical properties depend solely on the n.urneri’cal
frequencies of the attributes concerned, e, g. as postulated by the Mendelian hypothesis ;

(b) a vardstick or * null hypothesis ' for testing association between attributes of a
system.

In the next chapter we shall take up the discussion of () in detail. 'To keep our feet on solid
ground, we may, however, first consider an example of (8) taken from R. A. Fisher’s book, The
Design of Experiments. A lady claims—some do—that she can tell by sipping a cup of tea
whether her hostess added the milk before or after pouring out the tea itself, To Villdlcf"te
her credentials she agrees to submit to a test in which she has to identify 8 cups, 4 of which
received milk first, the other 4 tea first, but otherwise like the rest. She can taste them in any
order and receives no information other than the fact that 4 cups are of one sort and 4 of the
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other. If she identifies everyone correctly, has she justified her claims ?  In common parlance,
1s the result of the test a fluke ?

The card model of her test is the assignment of 4 red and 4 black cards of a pack of 8 in
a certain order w.r.t. the colour of the items alone. In all, the number of distinguishable
arrangements of 8 cards of 2 colours (Fig. 27) is given by (iii} in 2.02, 1e.

8!
4141

The correct arrangement is thus one of 70, and its electivity is therefore 45, In the long
run an individual would therefore pick out the prescribed, i.e. correct, arrangement once in 70
trials from a repeatedly and well shuffled pack. Accordingly, we say that the odds are 69 : 1
against selecting the prescribed order, if there were no association between the subject’s speci-
fication and the class to which an item belongs.  Whether we accept this as grtinids for enter-
taining much confidence in her claims is not itself a mathematical issue ; aad'it will be our
theme in Chapter 5. Most of us would agrec that the result at least offefs Sufficient grounds
for further consideration of them. W M

Fisher's example thus illustrates how we can legitimately invoke thé'behaviour of a suitable
model as a yardstick—or null hypothesis—for testing the connectedness of two sets of pheno-
mena, in this case a person’s judgment about a situation and th&Situation itself. It also draws

= 70.

WITH REPLACEMENT

WITHOUT REPLACEMENT
(39 + 13§ + 5%

- 9 90 © ¢
S XN - - 900
T X ° s . B ©
A Y
O 1 2 3 4 Score ) o 3§ 2 3 4
=1 O + +2 +3 Score Deviation (X) -1 © +1 +2 +3
“NG4 429 -2OY -OA65 -0 Frequency cy) -3038 4388 35 -Da2 0026

F¥ic. 28, The Score Distribution for Hearts in 4-fold samples from a full pack depends on whether we do or do not
replace each card taken before choosing ancther ; but the difference between the two distributions
s not great if the sampling fraction is srmall,

7
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atfention to the necessity of choosing the right model. By inforniing the stihject that there are
4 cups of each sort in the sample, we have in fact reduced the issue G one ol restrictive choice ;
but this would not be so if we withheld the knowledge that half the set were of one sort, half of
the other. We could then regard the identification of cach cup as e Lol saople judgment
exclusively involving the alternatives of success and fwlure, as i 8 siecessive tosses of an yna
biassed coin ; i.e. one whose long-run behaviour conforms to the histrilngtion (15308 The
electivity of a run of 8 successes calculated on this basis js (3% Ll Onhe isstnption that
the subject’s judgment is merely a toss-up, a correct identification of wl the cups wionld therefore
happen in the long run once in 256 tests of this sort, The odds would he 255 - against the
result, if the subject did not know how many of cach class of cups she had 1o wlentify.  In short,
the conditions of an experiment or the nature of the attendant circumstances of an investigation

alone decide what is the correct statistical model to use as vardstick of i .v{;b?{/ff‘r.w! result,

The choice of a correct model in the sense mplied in this cond®t cncdows the epithet
unbiassed as applied to a coin or other dic model with a particular siggaficiioe.  Tor our purpose
a coin is unbiassed, if the long-run frequency of a particular class of stples, car ten-fold tosses
of which 3 yield heads and 7 yield tails, tallics with its electivitysfa @ 2-cluss universe of 2 ifems
only, subject to the replacement condition appropriate to dic mbdels in general, If the behaviour
of a coin does not in fact conform to this requirement, weshave to seek an iterpretation of its
behaviour in terms of another model whose hehavionr wdtan guarantee. A coin which has a
40 per cent. heads score in an indefinitely large number@f trials, hehaves in aceordance with the
principle of associative neutrality or independencesdt successive sampling, il the distribution of
r-fold samples of specified composition tallies with'the long-run distribution of r-fold samples
extracted by recording each item taken singlysafter a re-shufile subscquent to replacement of its
predecessor from a pack of 10 cards, of which 4 arc red (heads) and 6 are black (tails) cards.

It is the standpoint of this book thatiFisher’s tea-cup problem gets into fucus what is the
essential link between choice and chapée> In short, we ask a legitimate question about sampling
only when we can set up a null hypothesis reducible to a model situation on all fours with a
game of chance ; and our justiﬁba\ﬁon for invoking the algebra of choice in this context resides
solely in the empirical circumpgtance of its observable relevance to such sitvations.  In adopting
this approach, we retrace Qir steps to Pascal and Fermat. That the connection between the
calculus of choice and thescaleulus of chance has its roots in the milicu of the gaming table and
the lottery is a truis (b which the circumstances leading to a celebrated controversy between:
.Pascal and Fcrmags'bears testimony. 'The occasion which prompted it alse furnishes a neat
illustration of 011\4’ Megation rule for the at least one type of problem. The Chevalier de Meré
had made a 'fq:rmne by betting small favourable odds on getting at least one six in 4 tosses of
a die, and lost'it by

. betting small favourable odds on getting a double six in 24 doublc tosses.
The negation rule gives the explanation :

Chance of getting at least one six in 4 tosscs :
1— (&) = 0517 (more likely than not).

Chance of getting a double six in 24 double tosses :

1 — (§8)% = 0-491 (fess likely than not).
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probability ; but the distinction itself is relevant to the scope of two types of theoretical problems
to which we commonly apply the term statistics. In contemporary usage we usc the term
statistics indifferently for ;

{a) raw numerical data, as when we speak of trade statistics ;

(b) summarising indices which serve to indicate what such data tell us, if taken at face
value, as when we specify population trends by a net reproduction rate or by a
standardised death rate ;

(c) laws of the gross behaviour of populations of particles, such as molecules or genes, whose
individual behaviour we cannot directly observe ;

(d) tests of the validity of our judgments about enumerable samples or reci;ges f;r classifying
such samples with a view to fruitful judgments about the universe fror which we extract
them. O
The theory of probability, whether defined empirically or formally, is necessarily relevant
only to the last two (c) and (d). In this book our concern is mainly &ith () ; and only when (d)
is our concern does the need to invoke a null hypothesis arise. «Ttheé distinction between (¢) and
() is by no means trivial, if only because population samples, as'conceived in the Kinetic Theory
of Gases or the genetical Theory of Inbreeding refer to numilers of individual items {(molecules
or genes) too numerous to count. For this reason, € may regard the sample size itself as
infinite. In any case, the focus of our interest in théBehaviour of an assemblage of genes or
molecules is how often an observable occurrence willhappen ; and this is de facfo an issue amen-
able to direct scrutiny. For reasons which we shall later examine, it is not easy to see how we
can invoke direct observation to assess how eften our judgments will be right or wrong if we
reject a null hypothesis because it assigns 4 very low long-run frequency to an occurrence. In
Chapter 5 we shall see that making any such judgment enlists either information of a sort which
our foregoing symbolism cannot coxer or additional assumptions that are not cqually self-
evident to all professional statisticigns.

\Y;
07  EXERCISE 208

zf\ EmriricaL DISTRIBUTIONS

*
\$

1. The Swedigh) statistician Charlier records 1000 trials of a 10-card draw. In each trial he re-
placed each of the 10 cards taken before drawing another, the recorded score being the number of
black cards drawn in a single trial. Comparc the result shown below with the appropriate electivity
distribution :

Seore . . 0 1 2 3 4 5 6 7 3 9 10
No,of trials . 3 10 43 116 221 247 202 115 34 9 0

(Aitken, Statistical Mathematics, p. 50.)

2. Uspensky records 7000 trials of a simultaneous 4-card draw from an otherwise full pack with-
out picture cards, the score being the number of trials in which the 4 cards drawn from the 40-card
pack were of different suits. Compare the net result with the electivity of the occurrence as computed
from the appropriate multinomial expansion, his figures for 7 successive sets of 1000 trials being :
113, 113, 103, 105, 105, 118, 118.

(Uspensky, Introduction to Mathematical Probability, p. 110.)
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3. The same author (#id.) records 1000 results of a simultaneous 5-card dr:

5 different

2 alike, 3 different . . .
2 different like pairs and onc different .
One triplet and 2 unlike

One pair and 1 tripiet

4 alike . .

Compare this result with expectation on the assumption that the electivity dis
long-run frequency distribution,

w classtfied by number -

IR
436
45
1B
2

{1

tribution tallics with the

4. Compare, with the appropriate electivity distribution, the following &ata Ldgeworth cites

w.r.t, 4096 throws of 12 dice by Weldon, who scored a single throw of more tha

1,9 pips as a suceess.
A

No. of Successes No. of Trials No. of Succcssci‘;“\, No. of Trials
per Trial. of 12 Tosses. per Triaksy of 12 "L'osses.

0 0 TN 847

1 7 e N 356

2 G0 9 237

3 198 ,\\j 10 71

4 430 U n 11

5 731 \S 12 0

6 948 O _

A\ Total 4098

LR Y
L.

5. Uspensky cites results of a die gafne recorded by Bancroft H. Brown. The player has 2
dice. He wins unconditionally if he firspsscores 7 or 11 pips (raturels) at a simultaneous throw, and
loses unconditionally if he throws crapsie. a total of 2, 3 or 12, Otherwisc he goes on throwing until
ke either wins by repeating a previou}'xiseére or loses by casting a 7. Compare the expectation of success

7 .

with the recorded result, o7z, : 4871Mwins in 9900 games.
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CHAPTER 3

"HYPOTHESIS AND EXPECTATION

301 ELvEcTIvITY, FREQUENCY AND ExPeEcTATION

WHAT we have provisionally called the electivity of a specified class of samples signifies its propor-
tionate contribution to the number of all possible classes of samples from the same universe
in accordance with the principle of equipartition of opportunity for association of its constituent
items. In so far as the process of selecting a sample fulfils this requirement, expericnce justifies
the belief that the obscrvable proportionate frequency of the act of choice should approach this
figure in the long run. In the domain of large-scale experience we can therefdré\speak of the
electivity of a sample of specified composition as its theoretical Jrequency or expectation.*

When we are comparing samples w.r.t. a numerically specified attribute,"€.g. how many
hearts samples of ten cards from a full pack contain, we are commonly ‘eoncerned with the
following type of question : is the observed numerical discrepancy betgicen its actual and theor-
ctical frequency (so defined) significant ; or is it merely a fluke ? _Tdisay that it is a fluke or a
- matterof chance in this context means that an equally large discrepangy would not be an infrequent
occurrence, if relevant features of the situation were strictly omparable to what happens in a
game of chance. We are therefore less concerned with the, thecretical frequency of a particular
sample-score than with the theoretical frequency or exptatation of a sequence of such scores
within a certain range. Therc is no clear-cut usage Which distinguishes the term expectation
from theoretical frequency ; but it may be more cxfressive to use the former when we refer
to the theoretical frequency of a set of numericalwalues within a specified range,

So far we have defined a class of 7-fold samples by the number of constituent items of each
class represented therein. If we know the size of the sample, the number of items in one class
is fixed by the number of items in the othéss*by subtraction from the total. If the classification
is binary, onc number therefore suffi s'\%n’spcuify it. In the idiom of the game, we then speak
of items of one class as successes in contradistinetion to faslures ; and the number of items labelled
as successes (e.g. red cards taken i;rém a full pack) is the sample score which tells us all we need
to know about the composition ofthe sample.  Thus the score 3 suffices to define a 4-fold sample
of 3 red cards and 1 black one, if'we distinguish only two classes, red (successes) and black { failures),
In contradistinction to theraw score, le. the actual number of items of 2 particular class, we
are equally entitled to dtejﬁne a sample by its proportionate contribution. 'Thus the praportionate
score of red cards ina#-fold sample containing 3is 3. In gencral the relation between the raw
score (x) and thé '(':\dri'mp(mding proportionate score (#) is given by # = (x — 7).

Another way of scoring 1s of particular importance when we are concerned with
the total electivity of one or other of a scquence of classes, i.e. the expectation that the score
will fall within a certain range 4. X (inclusive) about 2 fixed value F, or that the proportionate
score will fall within a corresponding range 4= U about the corresponding fixed value F,
In practice, we take the most representative score for F, or F, as the mid-point of the range.
The most representative score of an r-fold sample in this context signifies the score of an r-fold
sample whose proportionate composition is that of the parent universe. The most representa-
tive proportionate score (F,} of a binary classification does not depend on the size of the sa{nple,
being equivalent to the proportion (p) of items scored as suceesses in the parent universe itself,

*The frequency of a class here signifies its proportionate contribution to the whole system. In this book we
use {requency only in this sense, that is for fractions—never for whole numbers.
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This is the electivity (p. 75) of a success in a sample of one item. If F, is the most reprcsentative
raw score in an 7-fold sample, F, =rp. With or without replacement, the most representative
score is in fact the mean value * of such scores in all possible samples drawn from the same
universe, as the following calculation shows w.r.t. the raw score,

(a) With replacement
The distribution of raw scores is

0 1 2 3... r
q rogTip UOY SOV P
The mean raw score value (M,) is by definition the sum of the individual scores weighted
by their proportionate frequencies : ~
Mz:: z ¥, Fig qr—xpw "'\“,\
Fe=(} '\
o . rr—1) rr — N — 2
=0.¢+1.7r.¢g 1-?'!‘2-_2_—1—“9 2-P2+3—‘7:"2—.‘-1———)-9r_3f’3-..
=7 {g+py O

Since (g 4 p) = 1, we have QO
M, =plg p)r"t = rp.

(b) Without replacement N
As in 2.05 we put p = s/n and g =\~"f/n. The mean is then given by
0_£r; . Ffir—1ig n 2.x( ;’1) Fr— o N 7(r — L)(r — 2) for-a8
n ntn \, 2.1 a3 9] n'n

¥y

= nm[f(r-n +(r -—.’1{5}&"—2} s—=1) + (—r—:—_.él_)(_:__;%_)f{f—:ﬂ s =D ctc_]
'® '
S ;:J . (f+ § T:i}jf—ll

75, (n ._..1}(;.—'-"1) 5
= o == =rp,

\Q{Q = .
x® : . .
We may write the arithmetic mean of the get of numbers 3, 4, 3, 5,3, 2, 4 in any one of the following ways :
344 5
@ —L_ﬁi_*;j_'a‘_f_g_g s DB+ 06 + @@ + @3
» —_— AT,
7 »

. . (@ #2) + 35) + 24) + (3},
yrabolically, we sha]l represent {a) and (¢) respectively by
Ex
(a) - (e) Zy,.x.
When the mean of i 5COre X or f 1
Seme function thereof such ag ¥* is referable to o theoretical sampling distribution we

shall always emplo
'y (e}, fo : s
(¢}, for the sufficient reason that It represents for gur purpose a large~scale result, realisable

only as rin (G) beCOmes deﬁnlter “‘ 7 Vi use (2) w hen refer: g
Ial' N
e e shall later (Chapter ] ha € 0Ccasion to ( )
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Fia. 29. The expectation of getting at least 1 and not more than 4 hearts in a.§h}1ple of 10 cards extracted from a
full pack on the understanding that the player returns each card taken before extracting another.

a\/
LD
Whenever we specify a range of raw scores on either side of a fixed value F, by the differences
(x — F,) our fixed value will therefore be the sample nicati (M), We then refer to these differ-
ences as score deviations denoted by X, so that %3

X=x—-M, ols=X+M, . . . . .

For 10-fold samples made up of one card deawn from each of ten full packs, we can thus label
classes specified by the heart score with.their appropriate frequencies () as in Table 1. The
frequencies themselves are defined b:};(tﬁc successive terms of the expansion (2 -+ $)'%, each
term of which has as a factor a powes,of 3 divided by 4% (= 1048576) ; and the mean heart score

is $(10) = 2-5. ¢
"\n
. A& TABLE 1
N
Raw 9 . Proportionate Score
Score {x). Score I?ef:atian (X). | Proportionate Score (u,). Deviation (I7,). Frequency (¥}
AN ;)

1] — 2:5 0-0 - 023 1.3, 4-% — {:0563
i — 15 0-1 — 015 10,3°, 4719 = 0-1877
2 — 05 02 — 03 48,32 4-10 _ 0-2816
3 405 0-3 3- 0-05 120.37, 4~ = {:2503
4 + 15 04 + 0-15 210,38, 471 == (-1460
5 4- 2:5 05 + 0-25 252,85 _ 4710 = 0-(3584
6 + 35 06 4 035 21632, 4~ = 0-0162
7 + 45 0.7 + 045 120.3%, 4710 = (00031
8 4+ 85 08 + 0:55 45,32, 471 = 0-0004
9 + 85 09 + 0485 10,31, 4=10 = (-0000
10 1+ 75 1D + 075 1. 4720 = -6000
TortaL 1-0000
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We are now equipped with a compact way of defining the theoretical frcqucr.lcy. of all samples
within a certain score range or outside it. We shall use the symbol E{ > X)) to signify .the fff‘{p(ic'{t*
ation that a deviation will be numerically as large as X or larger. It tlhus represents (F ig. 289}
the total frequency of all samples with scores (x) : (1) as great as (M, + X)or greater ; (u)l ffzis
little as (M, — X) or less. The symbol E(< X) _mgmﬂes the expectation that a Flevmtmn will
be numerically less than X, henee that it will be in the range 4 (X — 1) dnclusive ; and this
represents the total frequency of all samples with scores no greater t}.}an (.Ilffw + X — I) and no
less than (M, — X + 1). Thus E(< 2.5) for the above distribution is thfa theoretical fx'e—
quency of a choice of one or other of the samples whose scores are If 2, 3,_4 with correspon d]..ng
deviations — 15, — (-5, - 0-5 and -~ 1-5. Since we are here dealing with mutually exclusive
acts of choice to which the addition rule applies

E(< 2:5) = (10.3° - 45.88 + 120.37 + 210.38) = 4 O

_ 907605 O\

1048576 O
We denote the cxpectation that a score deviation will lie outside thi§ tange by E(>> 2-5). Dv
the megation rule : ‘O

E>X)=1-E(<X). &
For the distribution under discussion \
| B> 25— 1 907605 _ 40971
(>25) = 1048576.751048576 °
Thus the ratio of the frequency of a choice involving 4 heart score deviation in the range 1-4
inclusive to the frequency of a choice involvigg™a heart score outside this range (i.€. a raw
score of 0 or aver 4) is 907605 140971, i.e. ahout 65 ; 1.

In the idiom of the gaming table, wg Sdmetimes express this by saying that the odds in
favour of getting 1, 2,8, or 4 hearts in aHLO-fold sample chosen as stated above are about 61 to 1.
What we commonly call a significa t'\ﬂiécrepancy between the most representative figure pre-
scribed by a hypothesis on the enehand (ie. the one which corresponds to the mean result
derived from an mdefinitely largéutumber of samples), and, on the other, a figure referable to a
Sam_ple from which we Propeseto draw a conclusion concerning the truth of the hypothesis is
a difference so large as to m0lTe heavy odds against ifs oceurrence. Tor reasons which will come
up for subsequent disguésfon, it Is customary to regard odds of 20 : 1 as large and odds of the
order 400 :.1 as verydatge. 'This convention mercly gives expression to an algebraic property
of the way In whichithe odds against the occurrence of a proportionate deviation of a given size
OF greater nprease’ as the deviation itself increases. Otherwise, it is arbitrary ; but there is

assigns to a class of occurrences:

To give this sort of numeric
or reject a hypothesis, it is neces
which reproduces its relevant fe

al precision to the legitimate confidence with which we accept
sary to formulate (explicitly or implicitly) the die or urn model
atures w.r.t. the following particulars : -

() whether the items come from the same .
{5} whether choice of individual items g re

(¢) whether the sample is lar i i i
ge or small as compared with the ;
whether the latter is itself very large ; 7 untverse (or universes), and

parent universe ;
strictive, if the universe is single ;

{d) the nature of the classification involved, and hence of scoring the result,
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302 TesTiNG 4 HYPOTHESIS

The simplest method of scoring a result arises when the classification of the universe is
binary {e.g. hearts and other suits), and we define the classes of sample by the number of
members of one or other classes present or by their corresponding proportions. This taliies
with the situation which faces us when we want to answer a question such as the following : is
the incidence of smallpox significantly less among individuals who have been vaccinated than
among individuals who have not been vaccinated ? Recognition of a real difference in this
sense 18 not the simplest type of problem involving scoring of the sort, because the construction
of the appropriate null hypothesis involves the sort of guesswork which statisticians call estima-
tion.  To clarify what we mean by a significant result, it will be better to start with a hypothesis
which leaves no room for guesswork. The Mendelian hypothesis will serve ouf“purpose.

‘T'he mechanics of gases and the study of organic inheritance offer exampled of hypotheses
which are essentially statistical in the sense that they prescribe rules that claim validity only
with respect ta populations of molecules or large scale breeding opcrations and start from the
assumption of associative neutrality in the terminology of the last chapter, ie. in customary
statistical jargon from random association. In the language of mathcmatical probability, the
Mendelian hypothesis postulates that fertilisation is comparabl¢$0 the extraction of a 2-fold
sample (aygote) of balls (gametes) from different urns, the male*and the female parent respec-
tively. 'The class structure of the two universes defines themdde of inheritance. The simplest
classification tallies with genctic differences arising from'a single gene substitution. In that
case, there can be at most only two different sorts of balls in either urn, and the maximum
number of classes of 2-fold samples (zygotes) is 3, the two homozygotes and the single heterozy-
gote.  Since we are sampling from different uniyesses, the condition of replacement is irrelevant,
and an apprepriate model is thus a two-faceddie, e.gz. a coin whose faces we may label 4 or a.
A mating of two heterozygous parents is then comparable to spinning two coins each with a face
A and a face . The result of fertilisatiens given by the binemial (1 + 32, ie, + 44 : % da:
%+ aa. If two independent gencs, i.&Sg¢énes on different chromosome pairs, are involved, the
appropriate model is a tetrahedral4-faced) die. If the parent is the double heterozygote, we
label the faces of the die AB, AB4B, ab; and the results of fertilisation are given by the expan-
sionof (} -3+ 1+ 1)2in agecordance with the chessboard procedure. .

A progeny of 7 indiyiduals is itself a sample from a universe in which the classes of items
and their long-run frequencies are defined by such considerations. That is to say, we assume
the existence of an indefinitely large universe of zygotes—the result of all possible matings of
a given type. Sinde)the universe from which we sample is indefinitely large, the withdrawal of
a small sample {p,/79) does not alter its composition appreciably, We can therefore regard
choice as repetitive ; and testing a particular mode of inheritance then signifies comparison
between the theoretical and observed frequencies of samples with different proportions of the
prescribed zygotic classes, 'The assumed class structure of the parent universe of zygotes is
our null hypothesis, and satisfactory agreement therewith constitutes our criterion of the validity
of the mode of inheritance we infer from the results of a breeding experiment. If there are
only two classes of zygotes, as in matings 44 by Aa or aa by Aa, the sampling distribution
corresponds to the terms of (3 + £)". Tor the mating of two heterozygotes the sampling dis-
tribution w.r.t. a specified homozygous class correspends to the terms of (3 -I- ).

Let us first consider the mating of a heterozygote by a homozygote, i.e. the familiar 1:1
ratio of a back-cross involving one gene differcnce.  We hatch 12 eggs from a blue by black
Andalusian cross, obtaining 7 blue chicks and 5 black ones. On the assumption that there is
only one gene difference involved, the theoretical proportion of blue chicks is 4. Thus the
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106 CHANCE A

Ml <o
12
Ch+'h) A £(<2)
._r—-'_ 1
SCORE: X =0 1 2 3 4 ] 9 [1+] 1" 12
scont CEVIATION: K= -6 +& 4 -3 <2 <1 O+l %2 +3 44 45 .6
LB Q"

( N
IX! 2 Ay,
y‘-m! G008 SO Oersir  a-3ga D-rkdd Qriady S g QUFoN o1} 0-Cial O'ﬁd}\ O'UC".‘J

Ny

Fic. 30, 'The expectation of a raw score differing by less than 1 and of a raw score différing by less than 2 from the
mean of all samples of 12 when the probability of success is 4 and the replacemefity¢ondition of Fig. 29 halds
good. Success in this context may stand for choosing a red card“from a full pack.

mean result of a large number of 12-fold samples of this gpecification should be 6 blue and
6 black, The question we have to settle is whether our gbserved result (7 : 5) is such as would
occur rarely or otherwise, if the single gene interpretatioh'$s in fact correct. Since the universe
of choice is indefinitely large, an appropriate model of'the procedure is successive extraction with
replacement of one ball from urn 4 containing onlyblack balls, and one from urn B containing
equal numbers of black and white ones. We label a sample black if both balls drawn are them-
selves black, _We label it blue if one balhis black and the other white. Yor a sample of
12 zygotes (Fig. 30) the elective distributign is defined by (3 + 3)12, viz. :

Score (no, of blue chlék\s) Theoretical Frequency
0."\“'.. (é)lz
’J\,“ N 12(%)12
\:'\2 66(4)'®
. O 3 220(3)'

ROl e

V7 o 123
12 (32

The numeric iati
mean (6) i wnity al ‘zrlluebof t%m deviation of the observed raw score (7) from the theoretical
oF must deviate b-y " Iea?.st Slel:Vf—‘d_ score 'valufa must either be equivalent to the theoretical mean
m either direction. Hence the expectation FE{< 1) that the score

observed will neither exceed the th i i ‘
that of the theoretical mean itselfe((}é?gcgl()?lea%}?iasriian hortotieby anmh ol of cours

12.11.10.9.8.7 /1\2 994
6.5.4.3.3.1 (é) ~ 4096

The expectation E iati ;
that thepobserved d(eialtgotlil?:ri?l Ceviation will be numerically as great as unity is the cxpectation
not be zero, i.e. that the score will not be equivalent to the mean.
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Thus the expectation of a deviation as large as £+ 11s

| 924 3172
4096 4096
In roughly three out of four samples a deviation should therefore be numerically as great as
unity. In so far as this is not an uncommeon occurrence, the observed result is consonant with
the interpretation advanced.

Let us now suppose that only 4 of the 12 chicks hatched are blue. The deviation is numer-
ically equal to 2. It therefore lies outside the range 6 =4~ 1. 'The expectation (E < 2} of a
score in the range 6 4= 1 énclusive, 1.e. a scorc of 5,6 or7 i3

1247 . (D" + 12 - (5" + 125 - (3)'°
_ 2(792) 1924 2508

4096 4096 \
Thus the expectation E( 2) that a deviation will #of lie in the range 6 i\f}'ndusfve is
| _ 2508 _ 1588 O
4096 4096 N

The odds that a deviation will be as great as 2 are therefore 158822508 or roughly 2:3.  Again,
we may say that the observed score does not deviate from theJofg run mean to an extent which
entitles it to rank as an uncommon occurrence. \

If our hypothesis is that the expectation for a panﬁ@?l&r genotype in a large sample is }
simple recessive offspring of two heterozygous paretits), the frequencies (Fig, 31) with which
we may expect 0, 1, 2 . . . 11, 12 recessives in a shini)le of 12 accord with successive terms of
the expansion {§ -- )12 The theoretical meanlseore is $(12) = 3. The expectation E(< 2)
that a deviation will be in the range 8 - 1 is the‘expectation (Fig. 31) of a score of 4, 3 or 2, i.e.

121 12857 12! -
aa D@4 g D@ +ge @-@°
41 8! Bl 21101
10819089 9 .
=J8777 216 — 14 (approximately).
) D Bl =<2
P\ [ ECz2)
O
\ )
x= o R
x = [ R a *i +2 43 o1& *3  +4 +7 o+ +9
—_—
Ixi< 2
y‘ = BOAT  O-LFET  De2121 SN0 0 01017 Q-D4DF Or0NS 00004 DrODM 00000 00300

Fic. 31, 'The expectation of choosing at least 2 and no more than 4 hearts in a sample of 12 from a full pack subject
to the replacement cendition stated in the legend of Fig. 29.
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So the theoretical frequency E( > 2) of all deviations outstde the tange 3 1y Hpproximately
1-G%

Thus the odds are 9 : 5 that we shall not get less than 2 or more thin 4 rece iy in asample of

12. These are also the odds against getting a deviation ws greal ay 00

We may generalise these illustrative examples ws follows. Our olacey el seore i an r-fold
sample is . This differs by X from the most representative, Leo mean valin s p [f we want to
know whether such a deviation is so significant as to throw doult on oo Ivperliesis, we ask our-

selves whether so great a difference is a common or frequent occurrence,  New the expecta-
tion of getting a difference numerically as great as X is the expectation that oGy tation will #et
be numerically less than or equal to (X - - 1), henee that the score will Tie o) the range from
(M, — X — 1) = (P—X+1to (M, +X - 1)= (rp 2N 1Y inclusds e, Al cspectation
that a deviation will lie within the range rp £ (A — 1) is given by
E=p4+ X —1) ™)
oy o ¥ qr_-"- — [-,‘(- . ‘\) . \\
T=(p =X | 1)
The expectation that the score will deviate from the mean By an anifih e mnerically as great as
X, or even more, 15 given by Bz X)=1— F( X NN

If we know the size of the sample, this method tells ns Mg exact adds thet o Jeviation will
qot-l?e as great or greater than X — 4 (the obscrved disc{i-p;mc\‘ Boetween obaervadon and the
limiting ratio).  Calculation can be expedited by recollese to tables of (. powers af integers
and of binomal coefficients (for example, Warwick (1:‘:}32), “Trobability Talles for Mendelian
- Station Bulletin 463" When the sumple s relatively Targe, for

is very I; orious, even if tables are availuble,  The
¥ the approximate ‘method explained in 3.04 below.

of a thffl sting a rati()1in this way, we must remember that there is no hard acd fust criterion
ifcant resul, The standard \Iw'éadopt depends on what hetting odds we are prepared
to take on - » i

» and our justification for 'doi

T "8 S0 will be the theme of Chapter 3. Where we draw
the line 18 parily a matter of tagte @n j

d temperament, partly of good or bad judgrent about the
\ uch differences of personal judgment do not affeet the value
vant data are on record, i.e. if the size of the sample as well as
€. Other workers, who might be inclined to take a niore or less
¥ Justify acceptance or rejection of a particular livpothests, can then

the ohserveq ratio is accessible,
Strenuous view of what~q' d
d:awvtvheir oWn. conclisions.
any gerlf:tlilcyﬁi‘l;?ﬁs a l}ypothesls for the f€asons discussed above, we have to remenber that
For instance, 2 3: 1 ratio implics that
» and that the recognition of neither is appreciably affected
are exposed.  If our data force us to reject a
: tha e ot dealing with a single genc substitution.
of homogeneity of the environilfl:stp o ey, if e have not excluded the o e
Phenotypes contributes tg the obi: or the Possibility that early mortality of one or other of the
hypothesis that 5 single gene subst(;:v ed d?"fatlons. Inter alia, our confidence in rejecting the
ca, exclude ooy 'possibilitieS_ ution g mvolyed will be justificd by the extent to which we

If a trajt is determineq by 24
0,12 . . . ¥ double recessiy

given by successive terms of gencs 18

el
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If 2 dominant genes, which produce no effect except when both are present, determine a trait,
the corresponding expression for the frequencies of 0, 1, 2, . . . dominant phenotypes is

7 9
(% -+ 16"
When 2 or more gene differences are involved or if dominance is incomplete, we have to specify

more than 2 phenotypes. If there are 3 phenotypes, we can calculate the frequencies of all
possible numerical arrangements by the general term of the trinomial (% 4+ v - @)’, namely

¥l
JRn "
Thus the theoretical frequency of getting an c¢xact 1:2: 1 ratio among 8 chicks hatched from
eggs of a mating between 2 blue Andalusians, that is, the chance of getting 2 }(hite, 4 blue, and
2 black would be

! o® ot

8! . 420 1 RO
21 41 2 " (i)g * (%)4 . (i)- = m = E (appmx-%\ *

It is important to notice that this is not the expectation of getting4\blune chicks in a sample of 8.

This admits of all the following possibilities : S
Seores F, egumc:ies
Blue  Black White / \K /
4 4 0 LF0 - 4006
4 3 1 AV 280 - 4096
4 2 2 WA 07 420 - 4006
4 1 3 RN 230 -+ 4096
4 0 4 O 70 = 4096

N Total 1120 = 4096 — 35 = 128,

o

Thus the theoretical frequency of aiga\mple of 8 chicks of which 4 are blue is 35/128, which is,
of course, identical with the coxre \onding term of the appropriate binomial (§ - £)§, i.e.

\ 8 . (§)% = %%

If we are mercly concersigd with the proportion of chicks which are or are not blue, our classifi-
cation is in fact Bins soand the binomial test given above suffices for the purpose; but our
hypothesis may cler}and that we give due weight to each of the residual classes. The
binomial test then¥zils us ; and we have to look at the problem of significance in a different way.
This will co{”ﬁ‘e; up for treatment in Vol. IT, where we deal with the Chi Sguare test.

EXERCISE 3.02

1. What are the proportionate possibilities of finding in a family of 7: (a) 3 boys; {6} 3 boys or
3 girls; (c) at least 5 boys ; (d) at least 2 girls ; (¢) not more than 4 girls ?

2. What is the theoretical frequericy of exactly half the offspring of a cross R.H. being recessive,
when the size of the sample is (a) 5, (8} 10, () 15, (d) 20 ¢

3. From 12 eggs of a mating between a black Andalusian cock and a blue (heterozygous)
Andalusian hen, 4 black and 8 bluc chicks hatch out. What are the odds that a departure from the

1 :1 ratio will be as great as this ?
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4., From 12 eggs of a mating between offspring of a pure s:vhite (dominant) Legbom cock and a
black Minorca hen, 2 black and 10 white chicks haich out. What are the odds against a departure

from the 3 : 1 ratio no greater than this ?

5. Among 16 offspring of a mating between roan and red eattle 5 are roan and 11 arered.  Compare
the odds against a departure as great as this from (a) the 1 : 1 ratio, (b) the 3: 1 ratio.

8. In the F, generation produced by mating black trabbits from parents respectively blue Beveren
and chocolate Havana, the phenotypes are hlack (like the £7), blue, chocolate, and lilac.  On the assump-
tion that the theoretical ratio is 9: 3 :3: 1, what is the theoretical frequency of a litter of 8 containing

at least 2 lilac types ?

%. Twelve chicks hatch from eggs produced by a mating of 2 blue Andalusiang™ What are the
odds that : (a) the number of white chicks will be 3 ; (8) the number of blue chicks. \will be 6§ ; (¢) there
will be 4 black, 4 white, 4 blue ? , \' N

8. If the theoretical expectation of white, roan and red calves of rgar‘f:parcntage is1:2:1, what
is the theorerical frequency of getting 1 white, 3 roan, and 2 red calyéy in 6 matings between a roan
cow and a roan bull ? AN

9. From a backeross of F; walnut to single the long-ruméxpectation is equal numbers of chicks
with walnut, rose, pea and single combs. What is the théorétical frequéncy of getting chicks with
combs as follows : 2 walnut, 5 pes, 4 rose, 1 single ? \4

10. What is the theoretical frequency of ggt;i}ié 3 pea and 2 walnut from 5 eggs of a mating
between ) walnut and (a) pure pea, (b) heterozygatts pea, (c) F, walnut, (d) single ?

11. Irf a litter of 7 produced by twoblack rabbits from a blue Beveren and chocolate Iavana

¢ross, what is the theoretical frequency of getting 3 black, 2 blue, 1 chocolate and 1 lilac ?
| S
ac 1P2. In a litter of 8 from the, same two parents, what is the theoretical frequency of getting 2
2NX
NS ) ANSWERS
' M

(@) 153 !3)%'11"2\“(5) 1955 (@) 133 () &%
@0; (» -2‘”5'73"‘:;2}6) 0; (d) 46,189/262,144,
372:627. 0N
Approii‘hétely 531115,
(a) App. Ximately 259 : 64 ; (b) approximately 96 : 334,
Approximately Ly,
((ll)r 1,082,565 : 3,111,739 or approximately 1 : 3 ; (8) 231 :793; (¢) 17,325 : 506,963,

1]

iga-

10,3?5 : 2,097,152 or approximately 0,005,

10. (o) 163 (5) L215: 16,384 (¢) 10,935 : 524,988 ; (d) 53z
11. Approximately . T T
12, 28 x 155 - 168,

(000 N O O R 00 10 1

303 THE BINOMIAL Histogram

We have no it i3 peas) .

requirementswofsze?l hm?\lr1 it 18 pussible to test the significance of a discrepancy between the

and the results of 13;130'5‘65_15 which postulates certain representative or theoretical frequencies
observation of a sample, when the items involved are reducible to a binary
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Areéa under Wz Curvg

*2:5
S y.dx
~25

L R E R R

A 3

' .‘ga\ ’\"\

! 1 | RPN
Score %, = o .2 3 4 5 6.7 8.
Devigtion X = -4 -3 ‘=2 -1 o =+ =2 +-3{ 7

Frequency ¥, = U gl®-2afa® 2604F TORS mal? 28('&""'0&('{2}" Tl

00N O OF W SI0fE Trden Q373 C-3dd C-h‘{m}ﬁill E-1=
» (74
(]

. [xt<3 NN
: AEAN

FEEE] £

- YW

Fic. 82, Approximately we may sum the terms of a binc;lj-}ial within specified limits by regarding the total as an
area, the numerical value of which is obtainable by ibtegration with due regard to the half-interval difference
exhibited in Fig. 15,

classification. 'The theoretical frequencies of all possible 7-fold samples are then given by
successive torms of the expansiofcdf ¢ither (g + p)7 or (gn + pr) = nt" in accordance with
the properties of the model which reproduces the essential features of the hypothesis. The
only difficulty involved is théJaborious nature of the computation of individual terms and the
sum of individual terms within a specified range, when 7 is large. Our next task will be to
explore the possibility\o“f\i'educing the labour without substantial loss of precision by recourse
to the method of 110> Statistical theory is, in fact, largely occupied with defining approxi-
mate distributions ¥hich permit us to sidestep the labour of computing an exact result.

Fig. 32, wifich exhibits the binomial replacement distribution for 8-fold samples of cards
classificd by delour (p — 1 = ¢) recalls the principle of the method we have elsewhere (p. 55)
applied to the summation of an H.P. We may write the equation of the curve alternatively :
(a) in the form y = f(x), as a function of the raw score ; (b) in the form ¥ = F(X), as a function
of the score deviation, As a function of the score deviation, the graph of ¥ is in this case
symmetrical about the origin X =0, when a = M =7p. Between two values X = a and
X = b, the area enclosed by the ordinates between the x-axis and the curve is:

7]
A:jtrdx

a

If b and g are situated at d units equidistant from x = 7p this is

Jw+dy.dx Y 1

rp—d
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Fig. 34. The symmetrical normal curve fitted to. th skewb omi 1(9;10 -} 1;10)
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x=01to t\x L 231 arc of triv ial magn tud

If Xis the score deviation, X-.- %~ M dX ~ds; and X =dwhena-:3 ' . U Yisa
symmetrical function of X, the above is then equwalent to

:"\s.

‘s\\” 2.j Y.dx i : : . _ o ()
“ ’ 1]
The exact expf{‘c:ﬁtion that a deviation will not be as great as 4 1s given by
T=Mid-1
E<d)= > v _ _ , o (i)
T M4 1

j =Mpde}
= . dx
=M d+}y
© On the assurnpt e
ption that the distribution 18 symmetrical the above is cquivaient 1o

=1 -
ZJ Y.dX . . . . . {iv)
Q

TR '

CE(> d)':lhiay CY.dX W)
[¥)
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Examination of Figs. 33-34 brings into relief a highly important, and at first surprising,
conclusion : as we increase » the distribution of corresponding score deviations becomes less
skew for unequal values of p and q. 'Thus the contour of a distribution such as {($ 1- )" differs
fittle from the symmetrical distribution defined by (% + )", when r is over 30. By taking the
mean raw score M, = 7p as the origin of reference, we therefore ensure that the summation
E{ < X) of frequencies within a given range tallies closely with the operation of inte-
grating the corresponding curve between appropriate limits as explained in 1.10. Our next
task will be to find a suitable formula for such a curve.

Tt will clarify certain necessary approximations, if we here notice one implication of the fact
stated in the foregoing paragraph. If we set the origin of the distribution (§ 4 §)" at ¥ = rp,
the score deviation (X) range is 4+ 7p.  More generally, for the binomial (g + )7, the range is
fivtm X = — rp to X = - r¢, e.g. from — 10 to + 90 in Fig. 34 which refers~to the binomial
(368 4 0.1y°2, To say that the histogram becomes more symmetrical abobt' the mean raw
score valuc as » becomes very large thus signifies that the bulk of the area @f‘the histogram lies
in the range X = - #p, when p is less than ¢. If so, the ratio (X = #p) does not exceed unity
For appreciably large values of the frequency corresponding fo X. N

¥
304 Tar NormaL CURWE

'To evaluate the significance of a score deviation x\n}encally equivalent to X, we have

Bitherte made use of the exact expressions : {
(;;,X):l_E(<X) Y
xw{s‘p+x 1) .
E<X)= &8O  y. - . - .. ()
E=lrp—T+1)
o~ 7 o s
:y}: pey . g . . . . . (1)

The only difficulty we have encau\tered arises from the fact that the computation of ¥, from
{iii) is laborious, as is also the e-xact summation of (if) if X is large. To sidestep this disability,

N

/NY THE A& OPERATION /
B

(nf wy

A

[
Ao ;t )
FIc. 35. The chord which connects the upper midpoints of two columns of the histogram corresponds closely to
the slope of the smocth curve passing through them in the half interval,
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we have now to find a function y = f{x) whose curve passes actually or very r}early t.hrough the
midpoints of the upper extremity of the histogram of y,. From a theoretical point of view
there are an infinite number of possibilities to choose from ; and the only criteria which need
influence our choice of the form of the function f{(x) is whether it is : (a) easily calculable ; (B)
sufficiently precise for our purpose.

We have already seen (p. 55) that the method of integration provides an approximate
method for summation of discrete series when the form of the corresponding continuous function
is recognisable, as is true of geometric series ; but it is not always €asy to recognise a sufiable
form. In secking for one we may take advantage of the geometrical properties of the histogram
of the binomial series. We first note that Ay, = (y,,, — ¥=) is the increment of y, per unit
increase (Ax) of the raw score » in the interval between x and + 1 (Fig. 35), {e

A}’ z = Aya' O

Ax )

N\S ¢
By definition the differential coefficient dy [dx is the increment of y pEr unit increment of « in
the immediate neighbourhood of the point whose co-ordinates ae(®, ¥). At that point, i is
the slope of the tangent drawn from the x-axis to the curve whiéh represents y as a function
of x. The difference Ay, (= Ay, = Ax), which is the slope\of the chord to the curve in the
region # to ¥ +- 1, is approximately the slope of the tangent to the curve at the point wiose
co-ordinate is (x 4 1). When the number of terms of the series defined by y, is very Luge,
the mid-points cut by the corresponding curve lie ety close and we may neglect the change
of curvature in the interval x to x + 3% Hence if Wy, is a function F(y,, x)of y, andjor «, we

may put R _
Aj’x':‘f.;F(J’m ‘x) . . . . . . (i\")

AP
e L o

. N
W}; can often get a better a]?prmqirsatfpn to the value of the differential coefficient of the curve
V&’V ﬁf}; passes through .the mid-points at _the upper extremity of the columns of the histogram by
ehning the central difference Ay, _, (Fig. 36) as the difference between : (@) the mean vahue

(Va-g) of y,_;and , (6) thé“mean value (Pesy) of yoyy and y, :

\::\':' AYos = Yoyy — Yoy
O\ = HPuss + ¥a) — Hye + Y1)

ad
e

A =80ma=ye) L L L )
If Ay e | 1S\a function ¢(y,, x) of y, and for x, we then have

a
ayzsé(y,x) L i)

}Ii ::; };::lve a general exp_ression_for Ve it"is always possible to derive an expression for Ay, and
i eltlppr%mmate differential €quation based on (v) or (vii). Tor example, the scrics of
figutar numbers (0, 1, 3,6, 10 | ., ) is defined by the relation Yarr= (¥ + 1) = 3, so that

Ay, = (% ). In accordance with (v} we put
dy
k zJ

(kD=L g
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THE CENTRAL DIFFERENCE

By, o =Wlly -0y, )

,j_ ﬁaym{ / é

LI ATT S

fegrtt ity g |2 : 7

rrrasakisien

EL TP Ch)
/

Gon) | Geew)
4 N 4
{z-1) (xa1} £ \~"\
ot O
Ax=l Ax-1 « N7

l\:'
A . .
Fic, 36. As a rough and ready measure of the slope of the smooth curve tHpehgh the upper m'lcl-pomts of the
histogram we may take the difference between the mean values ofﬁh@}@?dinﬂtes on either side of the

selected columr. v/
When & = 1, y, =y, = 1, so that R
1+k=%+1 P\%
k=% A

x? WY (x4 De
ny=E ety =t

.

N\ . 1
if » = 101, this gives y = 5201, '{{ifg\exact formula (p. 16) 18 x(L;-__)’ and when

O «=101, y, =5I5L
"The proportionate errer jn\ 1:1:11'5 region is therefore about 1 per cent. In general, the propor-
tionate error is of the ordér x=* (i.e. 0.1 per cent. when & = 1000).

If we proceed i a cordance with (vi) and (vii), we have yo 1 = Yo — **

NG

~O Byay = 3pa + 2+ 1) 40— ¥)
\ / =x+
Accordingly, we put

% ~ x4+ 4

x4 x
Syt h= 5

1+1

1 —!— k = ‘—"—‘Q—.

s k=0
_slx

Y=
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In this case, the central difference transformation yields the exact formula ; but it is important
to realise that the above are isolated examples of many analogous methods of deriving a differ-
ential equation the solution of which is more or less adequate as a computing device. For
instance, we might define Ay, _; as the difference between the geometric means of (a) v, and
¥z (8) yeand y,_,. Whether the form of the function y = f{x) derived by any such mcthod is
satisfactory depends on the criteria stated above ; and which method of getting such a function
if satisfactory in that sense is preferable depends on whether the parent differential equation
admits of a simple solution, In what follows we shall therefore explore more than one method
of detiving a deseriptive curve for approximate summation of a segment of the binomial histo-
gram. In doing so, we exonerate ourselves from any suspicion of arbitrariness w.r.t. the ApPYoxi-
mations we invoke ; and shall get a preview of a general method of curve-fitting for sampling
distributions dealt with in Chapter 6, 8\

To solve differential equations of the type which commonly arise in this eontext, it is vsefith
to remember that we have frequently to integrate by the method of paptial Fractions. Heren it
is wise to reduce all expressions involving improper fractions to thein froper form at the outsct
and to avoid any simplification of such fractions in subsequent operations. To get Ay,
Ay,_; in a suitable form, we therefore proceed to evaluate y,, {ard y,_, as follows :

7l P P x) 7l

2 — N . z+1. FIR S ]
AR P Ty e Y 2 a1y WP
:p(r — x) o\
g1 7" ‘

_ [J__ o N\
g+ 1) glx + 1)] B\ )
o+ 1) g + D g) "

e Yens = [p(ﬂr 1) Hgk\i.f
dr 1) g N . . . . . . . . fvi)

rLa
Yeog = "‘ 3 ! gt g(x) r! & r—T
e P st 1) W —ap P e

— g%
=%+t "

gF r+1

N\ _ [ glr + 1) g
P —x 1) ‘5] "I
We have now the data to yield an ¢
From (viii), by definition,

(ix)
xpression for Ay, and Ay, _; in accordance with (vi) above.

Ay, = e 2D p
Yz = Vg1 J’m-—lim—g].yw——ym

=, [*;’((;T h_e_ 1].

Since (p + g) =1

n 1
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Ry definition also

e g+l 4
Ayz_l—J’x y‘“‘lmy’_'y”[p(r—x—}‘l)_.;]
_L[i__ar+D i
? P(?‘—x—[—l)] ' ' - ‘ ' -

From: (x) and (xi) in accordance with (vi}
Ay, = $(Ay. + AY,.y)
R gD L)
ol gx+ 1) pr—x+1) g Pl A
: pr+l) _ _gr+D 4 —P]. \ .
co Ay, = — \J . .
yes =W T e D T A o)

U
N

7

The Difference Equation Ky
S

In accordance with (iv) and (v) we put

d_y,._,[P__ﬂ(" +1) _ﬂ D

de Lg{x 1+ 1) N\
We now transfer the origin to x =rp = M, 'puttiilﬁ X = x —rp, so that x =7p + X and
dylde = dY[dX, N _
.4y RS S 1] v
dX girp + 1+ X} ¢
N\

When » is large we may always na%et’p in comparison with #p, and if 7 is also large compared

with 1/p, we can neglect 1 by comparison with rp, putting

1.:?}1*:..,[__”_?;___1]#_#1#_ 1
YV ax = lgp + %) 9 9(1+5) g
O r

-}g)——-}g—i—iogK
TP q

X\e X
- log [Y—:—K(l-i—;;)m]"—"——gj

g - Xl
YzK(I—l—g)q.exp( qX) N ¢ <11}

¢ of the curve of ¥ = f(X), X will be small compared with 7p,
* Hence we may try out the approximation (p. 47) :

'w\ . log Y:‘:% . log (1 +

Over the greater part of the rang
particularly if (as assumed) 7p is large.
o that X = rp is less than unity over the

am for large values of r. Since g == 4.9,
f ¥ for positive values of X greater than

* Fig, 34 will help the student to visualise the validity of the assumptia
whole region which contributes appreciably to the total area of the histogr:
50 that 5 = 10, X can have any positive value from 0 to 90 ; but values o
10 are too small to represent on the scale of our chart,
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| (I X X?
o8 "'E "—;5 zrzpz‘

120

[ X X X
volog ¥V —log Kza-!:% —_ 2?2})2] —_ E
o1 (Y) . S &
= log{ = __2?}')@__ a7
—_ 2
oY~ K. ex ( )
P\ T

The product rpg, called the variance of the distribution, will recur frequently 4h, what follows ;
and we shall represent it consistently by the symbol V. When X — 0, Ya==y,,, the ordinate
of the mean score. 'The foregoing thus reduces to the equation of the ’s,q-'bahed normal cirrve

. _ Xg . ;’ N/ .
Y=y, . exp ( T ) QN . . {ziv)

The Central Difference Equation
In accordance with (xii}, we may also put e N

1ay 1[p(r+1)_ g q_—_p}
yodo 2lge+1) pr S x T 1T pg I

Ifaibeforex-—.—X—[-rp,(r—x—]— I)=(r— rgji;"X—l— D=r(l—p) - X4 I=(rg + 1 — X),
so that

! ‘“’,..,1[ Pr + 1 ar -+ 1) q—p]

?'ﬁ“ﬁ q(rp‘—ih.‘xl+ X) g+ 1—X)" Tpq
Y\ pr+1) “Nx r+1 X
*. log (—): . log(l.-{—————-) qr + 1) 1 (1 — ——-—) Lq_—_p) 3
A B S B Y R A 73 2pg % V)
v o x ¥ wil) (g-px
o) LT S L PR |7 e
LU T g +1 ’
and as before K — J",;n‘\
A X \ZEED W+l g—p
ALY ~ ) l:(l ____) 2¢ _ X 2p Zpg * .
V) Fm + 41 \! ;g_—I_—_i ¢ ' - )
When p = § =~ ¢, (xvi) reduces to
' 2X \Z)Hr+ 1)
Y.__ym [I _ (m) ] . . . - . (XVii)

If r is large, we may write this as

ygym.[x_(if)“]*’ o

If 7 15 very large, we may use the approximation (p. 46)
(1 — g)™ o g—om,
S Yemy, L enp [:_g_{a]

¥
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Since ¥V = rpg = 4, when p = § = ¢, the above is equivalent to (xiv), i.e.

_ x>
Y:ym.exp( o7 )

If 7 is large compared with 1/p, we may write (xv) as

7 X) 7 ( _ﬁ{{) ¢g—p
log(K) log( F?‘p 2}" Jlog il ” + % X.

We can then employ the apprommatlons :

! (1 L X) ~X_ X
BN T T
| (1 X) L X x N
BN T/ T T g g O
. rp Xﬁ] q [—X X2] (gs—p“) x
- log (”) 2qu 2% T2 [T T Sl R\ g
— X2 — Xz N
o =, m\\’
2rpg 2V V
Xz N
Y~ Kexp(zy_) \x\\
and as before K = y,, so that P\%
XZ
Y=~vy.. exp( o7 ) . . . . . (ax)

This again is the equation of the normal curde® 'The constant ¥, in (xiv) and (xix) is the value
of v, corresponding to X =0, x = M€— tpand (r —x)=(r —rp) =r{1— p) =rq,

rl
o=
Accordingly, by (vii) in 1.09, \x ol
AN 11
oY (211- Carpgt  (2aV)E
We may thus write (x;\ or (xix) in the form
AN

. \Y4 Y~ I exp (:g) . ‘ . . . (XT)
A\ 2V 2V
The constant ¥/ = rpg has a special significance w.r.t. the geometrical properties of the
normal curve. If we differentiate once we get

Pw T

() o)t

Yy = 1 ( X’)
X .
xXZv vz o
XE
When %--OX 0 or exp<2V)=0, so that X = =+ o0,

That is to say, the curve has a turning point at X = 0 and extends asymptotically to the X-axis
at infinity in both directions, On differentiating a second time, we get

ey - —1 [ Xz;QV)—-X— exp(—-Xz—'“2V):I-
. |lexpi— . ' ’
X~ ey #l 4
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When we equate this to zero, we get
X2
I—% =0
vV
CX= VT
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Thus the normal curve has points of inflection symmetrically distant + V¥ units from the

origin. It is customary to represent V¥ by the Greek small sigma o (ie. V = o®). We call
the quantity so defined the standard deviation of the distribution, being therefore given by

g =1rpg .

The usefulness of the normal curve as 2 computing device depends on how™far it can give a
good approximation to the sum of the terms of 2 binomial expansion in, any specificd range.
By definition, the sum of all the individual terms of such an expansion i§ whity. It is therefore
necessary to satisfy ourselves that the entire area of the normal curve igalso unity, i.e.

Ny
27N
<

2 ” ;
L Y.dX =1, ~\\
To do so, we have now to investigate the value of the int il .
e gy
2 [(° [_x 2 (2L x
mﬂmLe@(zV)JXZEwa(zV)J(
. 2
'T:';TL ¢ -da= ;4: ’
L2 exn Y g
s (217V)*L exp ( 21,’»;\" dX = o I.

O“ 7

Since I'is a definite integral itﬁgﬁrnaterial whether we write it in either form below

»

ol CI w
NT=| e gy | -tz d(ax).
I 40 0
\:‘,\.:“ . I [0 R )
& Sod = emddt g e
o) JO
o —gt =
A I.e9 dq— . e+ 4 da dx

e~ai{1+ety d(ag) . dx
e~ stk gn dx,
s
Iemwm&}@
0

i -_—]_ 12 ) g—t1+z=1k]
x

o

. dx

1]
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'The integral above is a standard form, its value being :

ol
I:tan"l x:i .
0

. Y 2,
. I 4 ¥ N I — 2 f . ﬁ.& I — 1-
Hence from {xxii) R . .
\ Z_ m _-—-n—n--X2 ana
(2frV)%L P ( v )_‘dX =1 N

The norimal curve, or, strictly speaking, the family of normal curves individually specified

+ticular numerical value of Vore?, is thus the limit to which the contour\of the binomial
:itains when r is indcfinitely large. So far we have no guarantee)ef its numerical
any assigned findte value of r; and our best way of getting alclear idea of its uses
or abussy as 2 computing tool is to examine what correspondence existS between Y-values cal-
culated : {a) directly from the expansion of the binomial itself ; (&) from (xx) above. For-
tunately, it is possible to curtail the work involved by recourse 16 statistical tables.

Eguation (xx) expresses a relation which sidesteps thedaborious calculations involving
factorials of large numbers, being suitable for logarithmic computation as it stands. It has the
additionsa! advantage that it is possible to evaluate the integral between any assigned limits with
a view to epproximate specification of the area of a.&orresponding segment of the binomial
histograma. 'To be able to read off directly the ordinate Y corresponding to any particular
valuc of X in any one of a class of functions ¥ = A .f(BX), it is not necessary to have a
library of 2-way tables constructed for all possible vatues of 4 and B. For it calls for scarcely
any additional effort to extract the requiz:ed’;rcsuit- from a single 2-way table of the function
Yo == Fc), identical in form with the foregoing when 4 = 1= B. To use sucha table in order
to find the pumerical value of ¥ corrééponding to a particular numerical value of X, we first
read off the valme of ¥ correspond{ rt0 ¢ = BX. The required result merely calls for a second
act of multiplication, oz, ¥ = Ay, .

Equation (xx) involves ¢he ronstant ¥, of which the value (= rpg) depends both on the size
{#) of the sample and the pafameter p characteristic of the universe. As it stands, it is therefore

unsuitable for 2-way_tabalation ; but it is possible to shorten the labour of calculating the
approximate value of }(éorresponding 1o a particular value of X = (x — rp) for any distribution
: A single table of (xx) for the particular

by a simple scalar ¢kansformation, as indicated above. ' i
case which aris€8ywhen ¥ =1 then suffices for the computation. Such a table cites corre-

sponding valties of X and ¥ for the normal curve of unif variance, ie.

Y= —1.*—_' . 3_*“3.
V2
To remind ourselves that this is the equation of a particular class of norma'l cl'lstnbutmns whose
common characteristic is that rpg == 1, d.e. 71 = p(1 — p), we may write it in the form

B
Vo
We now substitute in (xx) above X = ¢VV = co, so that
¢ — _J_{ ) . ] . . : . (zxv)
o
A inolv 1 -t
ccerdmgl}- (xx) becomes V= —— . &7 %",



124 CHANCE AND CHOICE BY CARDPACK AND CHESSBOARD

'This is equivalent to (xxiv} if we write

= yc =Ji’.
VvV @
y,=a6¥ . . . : . . . (xxvi)

Below is a condensed table of the Freguency Function (xxiv) of the normal distribution

3 ¥ 12 ¥
(= X + o). (= o7). (=X = o). (= oY),
- 0-3089 2:0 0-0540
5 03521 2:5 00175
1-0 03420 30 0344
1-5 (1295 35 y s\O'OOUQ
{ N\

NS ¢
A single example suffices to illustrate the use of a frequency function’table. Let us suppose
that we wish to extract an approximate value for the ordinate{3of the binomial (§ | £)*
corresponding to a score # = 17. 'The mean value of the score 48
rp = 25(0-8) = 20
X=17 —20 = 38’

The standard deviation is given by \ N
' V25(0-8)(0-2) = V4,
.U’:ﬁ 2,

In accordance with (xxiv) we therefore put®™ )

cz(X.-;“—cj’Z —@ +2)=—15.

Against ¢ = 1.5, the table shows i{-’-} 0-1295. Hence from (xxvi) above

Ye=0Y =01205
Q@ 2Y = 0-1295
AO : Y = 00848
The exact frequengs\qb}‘direct calculation is given By
A\ 25!
AN 178" & . 3 = 00822,

),
~ The }roportlonate erro
Le. about 4 per cent,
distribution itself is s,

t in this case is (0-0648 — 0-0622) = 0-0622 = (0:0026 — (-0622),
In this case the error 1s largely attributable to the fact that the binomial
- For a positive score deviation of 3, the exact frequency is
25!
g 87 - 3 = 00708

For a negative deviation of equivalent magnitude the

25! ‘
g 87 - ) = 00622,

exact frequency is, as above,

+ 3 is $(0-0622 - 0-0706) = 0-0664. ‘This mean

m that obtained from the table of the symmetrical normal distribution for
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both X = +~3and X = — 3 by less than 2 per cent.  Whether the normal curve gives a more
or less gocd it to a binomial distribution (g < p)” depends partly on how large 7 is, and partly
on whether p is large in comparison with ¢ or wice versa. '
The accompanying tables (2-4) exhibit
(a) the exact values of y for the distribution (% + 1)'® side by side with corresponding
figures extracted from the table of the normal curve and with approximate valies based
on the central difference formula (xvi) ;
(b} the exact values side by side with the corresponding normal values of (} +- 4)* and
()8

(¢) the cxact values and normal table approximations for (0-9 4- 0-1)*°°.
N\
O\
TABLE 2 O
- ‘ . A
+ X. 16,.{1)" C.D. Equation. (23I<)€§exp (—X*-P)
] 01964 ' 01964 LN 0-1994
1 0-1746 01767 £°L 0-1760
2 01222 01T 01210
3 0-0667 0-072¢ 0-0647
4 0-0278 00302 0-0270
5 0-0085 00085 0-0088
6 0-0018 ~280:0013 00022
7 00002 N 00007 0-0004
8 0-0000 N 0-0000 0-0001
&
o)
L\
“J
\ 7 TABLE 3
\."\l.
@&y &+ H=
— - \’ ® _ . —_—
\ 3} Frequency. Frequency.
i i Val .
r . Exact Val ; N can Value T
X X+o 25{: i (i)fs Normal Curve.| X (X =00 | g5, (4)e(2)%= Normal Curve.
0-30 20 01555 01596 00 | {0-00 01954 0-1994
150 60 1333 +1333 1-00 50 0-1745 0-1760
2:30 1-00 0-0u77 0-0968 2.00 1-00 0-1229 0-1210
3-50 1-40 00611 00589 3-00 1-50 0-0664 0-0675
450 180 00323 0-0316 4-00 2-00 0-0285 -0270
580 2.0} 0-0144 0-0142 500 2-50 0-0078 0-0088
6-50 2:60 0-0058 0-0054
7-50 3-00 00016 0-0017
B350 3-40 00004 0-0005
1
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TABLE 4
The Expansion of (0.9 - 0.1)100
Terms whose frequencies exceed 0.0001

(a) Actual frequencies by evaluation of 100,,,(0.1}= . (0.9)*-=

X X. Y. X. X. Y.
0 — 10 0-00C0 12 2 0-0988
1 — 9 0-0003 13 3 00743
2 — 8 30018 14 4 0-9513
3 — 7 0-0059 15 5 09327
4 —~ 8 0-0159 16 8 76:0193
5 — 5 0-0330 17 7 K NG0106
6 — 4 0-0596 18 8 {0 00054
7 -~ 3 0-0889 19 LAY 0-0026
8 — 2 01148 20 T 0-0012
9 -1 0-1304 21 10 0-0005
10 0 0-131% 22 N\N2 0-0002
L 11 1 01199 23 " 13 0-6001
N\

4

{5} Comparison with,th“e Normal Distribution

Mean Binomial® Ordinate of the Y
+ X. Value oﬁ . Normal Curve (V7 = 3), X+ vV
\\
. 28 )
0 \10&1319 ) 01330 00
1 N 01251 0-1263 03
2 s 0:1068 0-1066 0-6
3 KO gosie 00807 1-0
o\ 00554 0-0547 1.3
5.0 0-0333 0-0333 16
$ ., 0-0176 0-0180 2:0
{ 00083 0-0087 2.3
o> 8 0-0035 0038 26
N ] 00015 0-0015 30
\'“\3 .- 10 0-0006 0-0006 a3
|

From a study of thesc and

sdtia;:;:iis geter{nine the g_oodncss of fit ; (@) the size () of the sample, (4) the skewness of the
ution, 1.e. the ratip of ptog. For very unequal values of #and g, a good fit is obtainable

only if 7 is relatively large, To stat thi igati ‘ i
ol st lat lafggms% D e this imposes the obliga.tion of defining a satisfactory numer-
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305 THE PROBABILITY INTEGRAL

Testing the significance of a hypothesis which involves a binary classification invokes a
process of sumiration which we can represent by an area, hence approximately by the operation
of integratics: in conformity with (viif) in 3.03, wiz. :
d—}
E(> dy~1— 2] Y.dx.

a

We may r:ow write this as
2 d—¢ _ X2
O - T
If ¢ = (%" = V), s0othate = X ~—o, .
de 1 \
iX o O\
o dX = ade. ) O ’
Also ¢ = {7 — }) = o when X = (d — %), so that N
- . 2a —;j 1 »‘;\V
E(zd)~1 \/QwVIo \‘dc‘
2d-1 (N
N
V2 o’ v
The ir iz of (i) and (ii) can be expanded as;s‘q}ies suitable for numerical evaluation between
specifiet fimits. Whereas we can tabulate th& definite integral in (i) only for particular values

of ¥ and hence of p and 7 in the binomialNp - ¢)7, 2 single table suffices for the evalnation of
the infegralin (i),  Such tables, variou Iy yeferred to as tables of the normal distribution function,
the probability integral or error funcfion supply requisite information for evahuating E(> 4) in
various wavs of which the most I:eée}lt cites the distribution function defined by

s ] Jh o vaa
R =t 5 e ®de . . . . . (i)
(hy == 2 +(zw)i o
To use any table of t@f‘ébrt we have to make the substitution in accordance with (iv) of 3.03
 § d - .
N h= 3 . . . . . . . (1)
N g
The required\yglue of E(> d) is then given by the relation
E(> d) = 2 — 2F(h) N
Tables of the distribution function give the following values :
B ) 2 — 2F(h)
675 Q-7500 {-5000
1-000 08413 03172
1-500 0-9332 01332
2-000 0-9773 00454
2:500 {9938 00124
3-000 0-9987 (-0026
3-500 0-9998 (-0003

test of significance we make use of (iv) and

To perform what we shall henceforth call a ¢- :
P what we s rid yellow and green peas yields 140 green

(v) as follows. Let us suppose that a cross of hyb
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and 116 veliow seeded progeny, and that we wish to decide whether the result is consistent
with the assumption that such a cross would yield cqual numbers in the long run.  The appro-
priate binomial is (§ + 3)%%, whence

V=256 X %+ x § =64

soo=8.
The theoretical expectation of either class is 128 and the observed deviation {d) is 4= 12, so that
' 12—4%

= 1-44,

Tables of F(k) give F(144)~ 093, whence E(> 12)~2 — 2(0-98} == 0-14. This incans
that the odds are 86 : 14 or about 6 to 1 against a discrepancy as large as 12.
The usual procedure is to neglect the refinement of {iv) in favour of the’approximation

b t—f O
a NS ¢

In this case we should then put 4 = 1-5 and for E(> 12) ffom the foregoing table we
obtain the value 0133.  As an indication of the order of significanee involved this is good enough;
but it is important to realise that the error involved by neglect'of'the half interval in setting the
correct limits of integration may be large, if the sampleujsismall. The following numerical
illustrations are instructive. Column (¢) shows the valug*of E ( >d) computed by means of
(iv) from tables of F(k), and column (¢} shows the vngxé <computed by the more usual procedure
which neglects the half interval refinement. Thesiddle column (b) shows the exact value of
E(%> d) based on summation of the terms of the appropriate binomial.*

JTABLE 3

(@) Distribution of (1 + )%,

d ‘d\ : I
d 2 gl
= \\\ ot (a). ®). ().
; ’\:0?5 0-25 0-8020 0-8036 06171
2 12 10 075 0-4538 0-4544 3178
TP 15 1:25 02113 0-2100 01336
1 QA 2:0 175 0-0801 0-0766 0-0455
N 25 2:25 0-0246 0-0210 0-0124
AR 3-0 275 0-0080 0-0040 00027

d d— 3 :
d. = — {a). (b}. {c).

o

1 - 5 |
! ?g 0-25 0-8020 0-5046 08171 i
2 Lo 075 04538 04536 03173 |
3 15 125 0-2113 0-2098 01336 |

4 20 175 00801 0-0770 00455

2.95 0-0246 00241 0:0124

. '__-___-___‘___-_'_-—-——_

* I't is useful to have a n he

ame for the ratip ¢ = (X <~ o).

or as the standard scare, Statistical writers refer to it variously as the criticaf ratio
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EXERCISE 3.05

1. Examine Mendcl’s original data with regard to offspring of hybrid parents, as given below,
for significant departures from the 3: 1 ratio : ‘

Form of Sced 5474 round 1850 evrinkled
Colour of Seed 6022 yellow 2001 green
Colour of Unripe Pods 428 green 152 yellosw
Length of Stem 787 tall 277 dwarf.

9. Examine the following results of workers who repeated the second set of Mendel's experiments
cited above :

Investigator Yellow Seeds Greed Seads
Correns . . . 1,394 A\ 453
Tschermak . . . 3,580 AN 41,190
Furst . . ) . 1,310 m;\ “ 445
Batcson . . . 11,902 \% 3,903
Lock . . . . 1,438 A 514
Darbishire . . . 109,090 \ O 36,186

TOTALS . 128,714 A/ 42,691

N/

8. Hybrids of pure Blue (coat colour) and Sskﬁer-Fam mice are blue. A cross between the biue
hybrids give the following results : Ny
Blue 48 < Silver-Fawn 17
Is this result consistent with the 3'\:‘\1.?rati0 ?

C (Bateson : Mendel’s Principles of Heredity.)
N\N&~

4. Investigate the folloying result: Black hybrids of pu
witer se gave : Black 76 i\ZC?fécoiare 24,

re Black and Chocolate mice crossed

5. lixamine, ‘i‘he Segregatlon of each pair of allelic genes with regard to the 3:1 ratio, in the

following cross\ {gc‘meen mice !

(i} Black {Bh1xd) hybrids of pure Blue (BBdd) and pure Chocolate (coat colour) crossed fnter se
gave the following pro geny :
Black (BD) Blue (Bd) Chocolate (ED) Silver-Fawn (bd)
44 17 17 5

(i) Black hybrids of pure Black (BBDD) and Silver-Fawn (bbdd) crossed inter se gave the following

progeny :
Black Blue Chocolate
67 21 20

(Bateson : Mendel’s Principles of Heredity.)

Silver-Fawn
5
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8. (i) Walnut Comb hybrids of a cross between fowls with Rose (RRpp) and Pea (trPP) combs
were mated znler se to give the following results :

Walnut (RP) Pea (rP) Rose (Rp) Single (rp)
279 132 o9 45

Ié this result consistent with the 8 : 1 ratio for the segregation of each of the allelomorphic pairs
(P-pand R-r)?

(ii) The Walnut hybrids obtained in the initial cross above were mated back to the double recessive
(single comb) giving
Walnut Pea Rose Single
664 705 664 716\
Examine these results for significant departures from the 1:1 ratio with ¥egard to each pair of
alleles, o\
(Bateson’s results quoted in Babeock and Clausen : Genetics z’g@}Rélazion to Agriculture.)

4

7. Test the following results of mating coloured hybrids, bétween two Cream-white stocks
{Matthiola) for a 9: 7 ratio of coloured to Cream-white : \4
Purple 30 ; Red 8; Cream-white 24,
8. In another experiment the coloured progeny 61 cross between two Cream-white Sweet Peus
(Lathyrus) were crossed futer se to give o\
Purple 1634 ; Red 498; White 1593,
Are these results consonant with the expé’ctéd 9: 7 ratio ?

R\ (Bateson : Mendel’s Principles of Heredity.)

9. In the same experiment t.he\l}fﬂlen characteristics Long and Round were also investigated from
the following figures W

hbng 2844 Round 881
N
Are these results comipatible with the 3: 1 ratio ?
QO ‘ (1bid.)

10. SweetBeas with light leaf axils were crossed with Plants having dark ones. ‘The hybrids
crossed inteRge pave

Dark 654 Light 231

Examine these results for significant departures from the 3 : 1 ratio.
(Ibid.)

11. The purple-starchy hybrid from a cross be

. tween a le- te-
(PSS) maize was selfed ar Y cen a purple-sweet (PPss) and a white-starchy

¢ following types of grains obtained :

Purple-starchy Purple-swest White-starchy

White-seeet
1961 o tte-swee

584 217
Does the result conform with a theoretical 3 : 1 ratio for either or both of the two pairs of factors ?

(East and Hayes, quoted in Babcock and Clausen : Genetics tn Relation to Agriculture.)
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12. In a number of experiments with Drosophila, the female offspring of crosses Purple-Vestigial
male to Wild Type female were back-crossed to Purple-Vestigial males and the following results were
cbiained. Investigate separately the validity of the 1:1 hypothesis for non-crossover and for cross-

over phenotypes.

I )
! Non-crossovers. Crassovers.
No. - .
Purple-Vestigial, : Wild Type. Purple, Vestigial.

e | - _ _

1 : 178 202 18 16

2 152 227 13 14

3 21 100 18 13 I\,

4 69 164 12 8

3 155 150 17 p ~\1‘&

G 191 218 18 2\ 1%

7 140 | 148 20 C\J 15

8 116 | 122 g AN 4

~ .
(Bridges and Morgan : The §éconid Chromosome of Drosophila.)
13. In another experiment Purple males were crossedft\o' Wild Type females, and the offspring
mated inter se.  From the results given below, test : () Mendel’s 3 : 1 ratio for offspring of the hybrids ;
{b) the equality of the sexes among each phenotype. ()"

Wild Type. RN N Purple.
Male. ! Fentale. Male. Female.

1, 280
1 \\

81 \ 18 32 35

58 N 47 40 33

o |
"\".

A& (16id.)

14. The offsprilg of the cross Purple-Vestigial male and Wild Type female, when back-crossed
to Purple-Vestigiah females vielded the following progeny. There was no crossing over. :

\
Purple-Vestigial. Wild '"Type.

62 52

113 141

131 96

34 28

89 i)

33 22

| 90 112

Does our record of any one experiment disclose significant deviation from equality of the two

classes ?
{Ibid)
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- -718; “"The Wild Type female progeny of the cross between Purple male and Vestigial female were
back-crossed to Purple:Vestigial males with offspring as exhibited below :

Non-crossovers. Crossovers.

Purple. Vestigial. Purple Vestigial. Wild Type.
157 178 26 21
200 185 12 14
198 178 23 23
242 195 19 26
252 227 34 38
198 178 26 20

. . ac
Detect significant deviations, if any, from the 1:1 ratio: (4) among, ctessover phenotypes ;
{8) among non-crossovers. (N
O (Tbid.)

306 TeHE MEANING OF VAR;{I:?CE
In deriving an expression for computing an approxinjate” value of E(> d), we have en-
cou_n__te_red_;a s_tatls'sti(:_al constant (V) of great importange, /So far we have defined the variance
(V) of a.distribution. and its square root cailed the starj}d‘ard deviation (¢) by the relation
V=g <ypq . . . . . . (1)
This specifies ¥ with reference to a d istributiaftef which the frequencies arc successive terms of
the l?lnonnal_ (p + g)". . An alternative d@ﬁﬁi‘t’i(}n of V as the weighted mean square deviation is
consistent with (i) and is calculable for any*distribution in conformity with our convention that
¥ is the frequency of a particular scord, i.e.
VESye— My =3y.Xx* . . . . .
To show that (i) and (i \fs\ it i 1
and (11) are censistent, it is first necessary to show the relation of ¥ to the wmean
square score or second zero moment (V) and to the mean score (M), viz
- ANK o
) ,\“ sz:y.(x—im)?
\;'\}' = 2y(a* — 2Mx — M.
TR o =2y.x—2M, 5y . x + M,y
Since V, = Z_y\.; A and M, =3y . x,
- M‘\; o V = VO - 2M1.2 JI-' ~Mm2z J‘.-
Dy deﬁmt%n 2y =1, so that ?
_ ' V=V,—Mz2 . . . .
For a binomial distribution we have 0 . -

M® = (mp)® = ripe,

N ) .
S‘Ince _‘}) — r{ﬂngr__m N l — Ey . x2 — ¥ 2p2 . . . ) . (IV)
xgﬂ Y. xz = Vo= xgﬂxg T PP g7

Nt?wx2_=x(x—])+x, . :

< Vo=Zlalx — 1) + a7, 47 T
=z x(x—1). TP ¢+ T . Ty PR G5
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The term on the extreme right is the mean raw score, i.e. rp (sec p. 102). -
r ]
.Vz{ —1—?-'---“1‘"’}L
0 Zx(x )x!(r — x)!P g TP

- {:Z (% — 2)?1(1’ — x)!f)m gr_z}--{— 7 o
— [r(r—- 1)p2§;((ﬁr—_zﬂ—px‘?f‘”] +1p

x— 2) (r — »)!

T we put k = (x — 2) and [ = (r — 2) 0 that k = (r — 2) = [ when # =7 and & = — 2 when
=0, : :

v, [r(f 1)p* kig . ’ 3""]. +rp 3
== —_— —_—— ¥, .
; L IR 2 O
For terms involving k = — 2 or & = — 1 we have a coefficient inva}{»ix\lg' the reciprocal of the
factorial of a negative integer, and (Ex. §, p. 12) N e
| : R
(—'—ﬂ)! — 0. . \J
tience these two terms will vanish, and N
o k=il un.’\;' .
— —_ 2 4’_;-— - . .
Vo ["(" 2 ma=m! ] e

The factor involving the summation sign is new p+af=1
o Vo= r(rS2 1)p? + 1p,
Hence from (iv) above A

VG g + 19" — 1t = 101

"Thus (i) and (i) are consistenty but (ii) defines a scatter index of any collection of items to -
which we can assign a score,@nd is not restricted to sampling distributions as such, whether‘of
the binomial type or othgtwise. The constant V7 is of importance in statistical theory partly
on account of two proférties formulated by theorems respectively associated with the names of
Bernoulli and of [ {&ych{w. ' .

We may h;r{af state Bernonlli’s theorem in the following form :

If a scofe deviation X, in sample A has the same theoretisal frequency as a score deviation’ X, in

a smaller sample B, the proportionate score deviation U, = (X, - 7,) is nuinerically less than the

proportionate score deviation Uy = (X, -+ 7,). The expectation that a proportionate deviation

will not exceed a certain value e thus increases as we increase the size of the sample.

The validity of this assertion is inherent in the ¢-test. If raw score deviations as large as
X, from a sample of 7, items and X, from a sample of 7, items have the same expectation
1 1 :
X,—3 _X—3

a

¥

O, o,

. 1
‘"%__Xb_ﬁ'

i}

(r.pg)  (npaf .’
. Xa - % _ Xb _ %—
T, Y

3
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Ifr,=k¥. 7, k> 1, since 7,>>1,; and
Xa“%___Xb_%
ke, Vo
o X, = kX, + 31— k),
X _Xb ?(I-—k)_Ub 1k

CUeE S T T %k, R 2k,
Now (1 — £) is negative since & > 1,

Uy
Fkk k3 stated, Bernoulli’s theorem refers only to sampling which conforsisto the binomial
pattern, Tchebychew's theorem (Fig, 37), which sets an upper limit to Fl\w\expectation that a
deviation will be as large as ke is noteworthy because its proof entails no-assumption concerning
the nature of the distribution, being implicit in (ii} above. We assum¢that the range of score
deviations X extends from — u to , so that its range is divisible agifollows :

() X=—uto—(ho +1); | X)L ¥o.

(il) X = — ho to ho ; | X\< k.

(i) X =(ho + 1 to +v; pX|> ho.
By definition (p. 108), the expectation that a deviationawillbe numerically as large as Ag is given by

sU < < U,

—ihs+1) v
E>h)= 3 3+ 3 N 2
iy —y:." X {ha+ 1}
By (ll) above — ot 1) 0 Mo v
o= 3y XNI y x4 T yx
—u A —he (ho+1)
—(.'ba+1)x...‘\ v
Z\§y1X2+ S y.Xr<or. . : . - ()
T (ha -+ 1)

Since every value of X* in'the range defined by the expression on the left of (vi) is greater
than A%? P\ .
—{Ag+ 1) "\’..

L — (Ao £ 1} v
\{E\k%g"‘r y. k% < z y. X4 z y.X'*’
<& tho+1) —w (ho + 1}
AN v ~(ho + 1) v
i 2 v 2 y}< > v X+ Y yxe
7\ W . T 1 —u a
From (%) and (vi) above i Gt 1
~(hot 1) "

Bo* BE>my< 3 5. X+ ¥ y.X
- (ha+ 1)

= k% E(> ha) < o,
1
SEGR) < L 0L L (i)

The I i ; )
X ﬂs; relation constitutes the theorem, In particular, an upper limit to the expectation that
will be equal to or greater than 3¢ is given by

E(> 80) < 1.

For the normal distribution & = 8g) ol e e . )
normal. Tchebychev’s theorenf tell:) “~ 377 ¢ but sample distributions are not necessarily

us that there exist distributi 7hi
froana 51 ; ' 8 ng distribution for which the net
quency of score deviations exceeding 3 times the standard deviation can be as great as §. X%%¥
*Hk Omit on first reading.
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5 ) lhaert v
D N SR 2, 2
s Ly Xy ly XD

Az

L] ~{hege] ¥
5 2 2 2 2
T rx "[n;l)y LI { % Y (,.%,} )"}

e Ml chel-
R 7, T 2,,2 .2 ~fhea
SEpwt e yxr i e E One) Yt B
Kot E Oned —
S FE Db e Jh-z
N\
N
» - L - - - - L - - - - - L] - - -
i O\ ]
=h& =3 <2 =1 O +1 42 43 +4 (’~:’" he v
_/:‘s_ — ~ ':,' A: e —
! : A i
(> he : IKIShe G ; > 6
i :
stha o i(ho'-\] i ~\\: E - .
ZyX>K¢s ry ! ¢*{ . _: Zyxabhzdziy
v - ' N : nGvi) hSvil

S
TCHERYCHEV S ¢ THEOREM

. LR
Tig. 37. Tchebychev's theorem shows that the region Gntside a score range expressible as 2 multiple (%) of the
standard deviation can never exceednd Fraction itself specifiable in terms of A

~ ) §

BXERCISE 3.06

1. Find the standard deviation of the following collection of scores :
I3 00 &5 33 55 85 35 45 25 &

2 23

P\
8* Hu=x-—ris Q@ﬁ%aportionate score of a distribution of raw scores (x) defined by (p 4- 4)",
show that the variance \'the proportionate score is given by
Q V.= (pg+ 7

4 .\’~ Y
3. Showhat the variance of the following distributions calculated in accordance with the weighted
mean square deviations formula accords with the corresponding numerical value of 7pg :

G+ GHHs G+ G+
4* Show that the mean and the variance of the natural numbers from 1 to # by recourse to the
formula in No. 4 of Ex. 1.04 for the sum of their squares are respectively

n-+1 nt—1
=g V=

Check each formula by direct calculation w.r.t. the first 10 integers.

5.* Show that the variance of the non-replacement distribution (s + n)(" = ai" is given by

T
rpg (1 — ;;)0
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307 TuEe PorssoN DISTRIBUTION

In deriving the equation of the normal curve, we have assumed that we can put p - 1~ 7p.
This means that #p is much greater than unity, and hence that r is large comparcd with the
reciprocal of p. Otherwise we are not entitled to make this substitution, and the o ppropriate
continuous distribution for large values of 7 is not symmetrical. In any case, we may put
== =01=py.(1—p"
For large values of 7 in accordance with the approximation given on p. 46 we may write this as
g e g . . : : . )
. For the frequency ¥ of a raw score x defined by the appropriate term of (ga]- )7, we there-
ore have \

7! O\
x -y b N
yg(r—x)!xl proem.e O
- 7l (rp)° . e=7P . ™ ) N .
el xl o @

By Stirling’s theorem (p. 48)
-7l o e Var Y rrrd
(r— x)!__(,, — X -FHE gt _.1‘,_/25_.,_- (r —a)y—%+d & " "

7! R
.(r — x)l Tz_(f o x)r—x+} . r,g: V. . . . . . . (111)
We may now write N
(f _:&K—m+i == p7-T+} ) (1 _ i:)f—z+%’
"‘ 0: ?.
\
" (7.4 x) ~x+3 P = T ) (1 . f)!'—z-i—}l
\» 7

- In the nei \’ .
neighbourhood of the'mean (M = 7p), & is small compared with 7, since the present

assumption i i ¢ .
(r — xP_‘_O?)liuthai.: 718 porgreat compared with the reciprocal of p.  If therefore 7 itsclf is large
B=7 lngl\ neighbourhood of the mean. On that understanding

\ Ny (1 x)r—x +3 o
a\%% - ~[1 -} ~vec=
\ 3 ¥ ¥ -_— £l

) DR GET) i JPC PR ES S . . . . . ()
By substitution of (tv) in (iii), we have

rl
m.@’.].

Hence from (ii)

y:M__Mz.e_M,e”

x! x!

‘.14 . £

C Yy ew

N A2

x!
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Subject to the same condition

7pg = 1p(l — p) = 1p.

VM ad o~vM . . . . . (Vi)
Hence we may write the Poisson distribution defined by (v) in the alternative form
Ve.e ¥
Y

This formula or (v) serves for approximate evaluation of the theoretical frequency 0, 1, 2, . . .
successes when p is very small. We then have

Ye=¢eM; y =¥ M ~
M2 M3 N
Yr =€, o1 Ys=e M, 31 \.\“.\
Accordingly we have ~\ N
Zamy A2 ﬂ»’f" SR
S yemen(tp 9
z=4{ SI }
When r is indefinitely large, AN
Ty '\‘
Zy,,.u-.e‘M e = 1. N
F=0 \/

The Poisson formula is therefore consistent witly $Be condition that the sum of the frequencies
of all possible score values is unity. The foilc}wmg example from Weatherburn (p. 49) illustrates
its use as an approximate description of an“actual sampling distribution. One thousand con-
secutive issues of a periodical recordeddedths (x} of centenarians as follows :

+8 3 =

Recorded deaths . . . 0 \\ 1 2 3 4 5 5 7 8
No. of issues . . . . 229 & 325 257 ilg 50 17 2 1 0
Paisson frequencies (M = 1-5) . 233 1 3347 251-0 125-3 47-1 14-1 335 -8 0-2

O
3.08 VAIQ\ANCE OF A NoN-REPLACEMENT DISTRIBUTION

We have hithertoy Asumed that our universe is indefinitely large in comparison with our
sample byt e‘”Sg.me token that extraction of the sample does not appret:lably change the com-
position of the Whiverse, and hence that the condition of replacement is irrelevant to a specifica-
tion of the sampling distribution. Fig. 28 in Chapter 2 gives us some solid ground for the
assumption last stated, but we are not entitled to rely on it until we have investigated the pro-
perties of the non-replacement distribution defined by (iii) in 2.05, viz.
sto) flr-a) i
Vet — o - - D)

Before proceeding to examine in what circumstances, if any, (i) is reducible to the normal
equation, it is necessary to evaluate the two constants, M (the mean score) and ¥ (the variance}.
We have already seen that the mean raw score of the binary hypergeometric distribution is the
same as the mean (rp) of the binomial distribution for repetitive choice. 'To get the variance we
proceed as in 8.08 above. In accordance with (iii) in 3.06 we have



RD
3
T/A—-I/ _M2——!/ _fzps

and _
_-xnr_,..2::x=rxx_l).ym+z x.}’z
Va' zZU Foo ¥ ,Z{) ( #=0
= [xi wlx — 1) J’x] + rp.
x:ju #! s(mjf{r—:cl

SVomrp= 3 e — 1.

al (r —x)l A
~D.ss =D -2
_nr zﬂrf(s ,Zo G20 = (

§— 2)‘1—2:f(r-x]_

N\
r—1.s6c—1) r— R
=—_n“r"——-(s 2+f) "\”~\
N
_Hr—1s(s — 1) (n — 2y AWM
T "G
_r{r—T1).s(s — 1) 'M;\"
- win—1) ° v
Since np = s ( " z.}}),‘
r — 1)(s +4¢
V“_TP:TP'__—'AM.* .
rs —,—*r—- s+ n
Vozrp{v”."n—-l }
_ & ety
L Vo—r2f>2=“r}*{ﬂ r s:——nl rp P}_

Since r5 = fpﬁ and (2 — s) = f \ﬁ}g
:s‘\V: ?’f){m)}

R n—1
_TPe(n—7)
~\\ n—1

»1":%“ =?‘P9(ﬁjl)(1~%) )

When # ls\la,r\ge, we may consider # &~ (# — 1), so that

;
If we write F for the sampling fraction (r < n)
V=me(1—F) . . . i)

7 is itself much larger than 7 and (11i} then reduces to (1)
placement distribution,

Even when 7 is targe, Fis small if
in 3.08, the variance formula for the re

EXERCISES 3.07-3.08
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(i) (% + o)
Gi) (005 - 0-95)8.
(ii) (0-01 4 0-89)20,

2. Compute the variance for the distribution of (@) hearts; () red cards; (c) picture cards in
samples of 4, 5, 6 and 7 cards simultaneously extracted from a full pack.

309 TueE NoRMAL as THE LIMIT OF THE HYPERGEOMETRIC DDISTRIBUTION

If a pack of # cards consists of s = (np) cards the choice of which constitutes a success and

f = (ng) cards the choice of which constitutes a failure, the raw score distribution for an r-fold
sample is as given by (i) in 3.08 with mean 7p and variance defined by (iii} in 3.08, viz.

v —rpg (1 — ). A

By Ex. 3 of 1.06 (p. 39), we have N

r —x s{=+1).f(r—-w—1j

T T, fo-= " Ve \:

By definition )
SEFU —gls — D{s —2) . . . s —x + D)5 — &) = (s =@ s
FO S DT~ 2) o (e rha D~ ) = (f a4 D) S0,
(r — 2)(s25)
G RRN PRV e e Vi
if the sample is fairly large so that (r —1)“23'

(r = H)np — )

Yot Z G P Dng —7 10 7

Ay, 80 —o(mp —x)
oyl (e g — 7+ )

:,:\'"_ n{rp —q) +r—(n+ L)x ‘ . _ ] 0
9.\ ""(nq—r)—]‘—(nq—rﬂ;'—l)x—l—xz

O\
When # is large aq&“is large, we may put (ng—r+1)=(ng—7) (n+1)=n and
{rp — q) ~rp; andyf nis also large in comparison with p~1, (mrp + 1y = nrp
AN

~O Ay, n{rp — *) : ) (if)
N/ "Z“@qwr)—}(ng—f)x—{—xg
As usual, we may write rp = M, and it wiil be convenient to put
C=ng—r . . . . . . (i)

Ay — n(x — M)
oy, TC + Cx+ &%
On transferring the origin to the mean by the customary substitution which specifies the
score deviation distribution, i.e. X = (¢ — M), and x = (X 4 M), so that
x? = e —E— ZMX+ Xz!

we have
LAY —nX N )
Ty, THCF CM + M) A (C+ 20X + X
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140
For economy we now write _
A=(C+CM+ M%) aend B=(C+ 2M) . . ‘ (v)
Whence from (iii)
'B—M=9g~r—|—M=ng——r+fp=(n~r)g . . . (i)

In accordancé with the assumption that # is large by comparison with r, the following relations
between the constants simplify subsequent work

B?— 44 =C(C —4) = (B — 2M)(B — 2M — 4) =~ (B — 2M)? . . (vii)
B=(ng—r+2p)=ng—+(1—2p) =ng—rlg—p) . . . (viii)
By a substitution already invoked we use ¥ = rpq for the variance of the normal distri ution, and
MB = Mgn — Mqr + Mrp ~ V(n — r) + M=, Q.
SO
n # '\

If, as in 8.08, we use F =7 = # to denote the sampling fract{on, we have the following
expression for the true variance of the hypergeometric distributioaaé’ defined by (iii) in £.08, vis.

MB — M2 . )
—-———mgV(l—-F{‘ . . . . . {ix)
n Y
With these values of the relevant constants we can}tf-éat (iv) as a differential equation, $o
that ¢\
dY  —nX\ dx
Y_A______—_;I{jBX—f-X2 . . . . . {(x}

I the factors * of (4 4 BX - X% are‘(;yf —a)and (X 4 b)

— B+ VB2 {3 — B — VB2 44
8= 2*\\ and — b= 5 .

Whence from (vii) and (axy ﬁbbve, we have

— B - (B> _

NP

b=M—MB=—auV(1—F) . . . . (i)
We may an.rg:\write (x) in the form
d_lfw —nX.dX _oon { a b
Y @ -aX0 6tala—x +X}dX'
1 —na nb
ogY__b_!_alog(a——X)-—b_i_alog(b—,l-X)—i—logK.
log ¥ o —™ (%)_" i )5
& alogl a —_b—]-alog 14‘3 +1logk . - (i)

In accordance with the assumption that 5 j ) _
hat 1 r
both ¢ and & in (xi) and (xi) are ip at 7 1s farge and that » is also large compsred with 7,

N general large compared with X over the greater part of the

* From an algebrajc point of view alone, the choice of o

to give the constants g and & a geomeétric Pposite signs is immaterial, but as we shall see necessary

al meaning in {xvi) belaw, descriptive of the range.



HYPOTHESIS AND EXFECTATION I41

range, We can therefore use the logarithmic approximation

bt a a 2a? b+alb 282 ° B
o log (z‘)z,gz . . . (xiv)
k 2ab ) ) ) :

From (xii) above

ab= —nV(l — F).

o ()= (o=

Thus (xiv) reduces to

— X2 ,
. ~ = N\
s Y__k.exp(ZV(l_F)) X
When X =0, s0 that Y= Y, ¥ =k and R\ \J)
_ X L ™
Y=Y, exp (Q—V—(i—-—F)) SN . . (xv)

'The last equation is identical with the normal, except in se"f;}r\ as V(1 — F), which is the
variance of the hypergeometric score distribution itself, replases V = 7pq, the variance of the
normal distribution, and if, as we here assume, 7 is jﬁ&act large by comparison with 7,
V{1—F)~~ V. Hence (xv) is equivalent to the normal-€quation, in accordance with our initial
assumptions, In other words, the non-replacement §aw score distribution for large values of r
does not differ sensibly from the replacement rawsgore distribution if the sample extracted is a
small fraction of the universe itself, N

k% It is supgestive to notice the familylikeness of (xiv) above to (xix) in 3.04 derived for
the replaccment distribution by recoursg™to the central difference equation when p = § =g¢.
With the substitution of u = — na (@ ¢) and v = —nb = (b + a), we may write (xiif) as

Y\’“—:k(l—%{)u(ﬂé) Y )

N

When a = b, so that &=, this reduces to the same form as {xviij) in 3.04, viz.

O X2\ .

.'\'\\ sz(l — aﬁ) T . . . o (xvil)

When Y «\0\ in (xvi), X =a or — b 'These co-ordinates therefore define the entire
range of the disttibution, so that

o\

r Vae—1 . . ... (xvid)
—b

into the properties of (xvi) by 2 substitution

We may profitably anticipate further insight
z — b, so that

involving change of scale and origin, viz. : X == {2 + )

(1+%{):M; (1_9:(?’_;’?)(1—-2); dX = (@ + bdz.

b
X\, XN o M BT o

Y. dX =C.3%1 — )" dz.

**%k ()mit on first reading.
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Since = (X + 8) ~ (a + B)

. in+ b
Y (@4 &) .
J Y.dX=10C. 21—z de . . . . (wix)
# (m+ b
@+ h
For the entire area bounded by the curve, s = 1 when n = g and 2 = O when m -= — 5.

Hence from (xviii)

c le“a ) de=— 1
]

1 1
M —2)dz== . . . . . X
J U= Q& ()
The definite integral on the left belongs to the class known as Beta fgﬁgﬂons, dealt with in
6.07 below **%* N\
QO
£ °
N
»
R
\®
\‘\\\% ‘\0
‘z 3
NV
N\

'\sS
(:} w’
o
"\V
N
QO



CHAPTER 4

THE RECOGNITION OF A TAXONOMIC
DIFFERENCE

401 STATEMENT OF THE PROBLEM

A vixy common type of question to which it has been customary to apply the mathematical
theory of probability is one of which the following is an example : 2 vaccination effective against
smallpox ¥ It would be unnecessary to invoke such considerations if it were trugsthat © () no
yaceinated person ever gets smallpox ; (6) a high proportion of persons not themsélves vaccinated
do get smallpox.  As things are, neither statement would be true of the poptldtion of our own
country, In so far as we are justified in concluding that vaccination is bépeficial, we therefore
have t hase a verdict on the possibility of giving an affirmative answero the question : is the
incidence of smallpox higher among persons who have not been than g:fgang persons who have been
waccinated? Alternatively : is the proportion of infected person€ fower in a population sample
of vaccinated persons than in a population sample of persons who have not been vaccinated ?
So stated, the problem is essentially like that of decidim’g\\vhether there is the same proposr-
Hor. of black balls in two urns each containing white balls\and black ones, when our only source
of information is such as we can derive by taking a sample'of balls from each. Insucha situation
ur null hypothesis is that the two urns are indeed identical. Our first task is therefore to explore

the implications of testing this hypothesis. RN
Hitherto we have confined our attentionjl;b the sampling distribution of raw scores, 1.e. the
sheoretical frequencies of getting 0, 1, 2,0\ . 7 items of a specified class of items in an r-fold

sample.  When we are comparing samples of different sizes (r, and r,), our basis of comparison
must be the proportions rather than théactual numbers of items of a given class. Corresponding
to 0, 1, 2 . . . ritems of a partictlar class, e.g. black balls from an urn containing black and
white balls in the proportionsyp(@nd ¢ = (1 — p), the proportions of items of the same class
the 7-fold sample will be /5

O 1
.§.‘ . 01 ;_!

2 3 r
& e
In any 7-fold sample bbntainjng x black balls, the proportion of black balls will be x -+ 7, and
the theoretical fréquencies of samples containing x -~ 7 black balls is therefore given by cor-
responding terms (p. 89) of the expansion (g7 + pm) & i, If the numb‘er (7) of bz}lls
in the urn is very large compared with r, we may use {p. 77) the more convenient expression
(¢ + PV, so that the theoretical frequency of a sample in which the proportion of black balls is
x =718 7,4 .p% . g"~%. Evidently, the sampling distribution of x = 7 is the same as the sampling
distribution of x itsclf.

To keep our feet on the ground, let us consider a particular experiment 6f this sort. From
two urns we draw samples as below. For simplicity we shall assume .that we replace each ba}l
drawn before choosing another, since the class of problems we later discuss presupposes a uni-
verse indefinitely large by comparison with the sample chosen :

Size of Sample No. of Black Balls Proportion Ditte

Um A . N . 12 9 F 3
UmB ., . . 8 4 1
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F16, 38, Expectation that the proportionate score deviation for an 8-fold s?mfpfé will be less than + 815 when the
probability of success is 13 in 200\
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Our problem is to decide whether the proportion () of «I;lack balls in urn A is the same as the
proportion of black balls in urn B. If we did not\know that the two samples came from
different urns, we might state the question in the alternative, and algebraically equivalent, form :
could two such samples have come from the same trn ?

I we knew the composition of such anfh, ie. the numerical value of p, we could state
the theoretical frequency of getting either asimple of 7, balls among which By =x, + 7, 1s the
proportion of black ones or a sample of ¥, balls among which the proportion of black ones is
P, = &, - 7, in accordance with the hihomial sampling distribution of & = 7. We could then
answer cither of the following questions : (2) how often will it happen that the proportion of black
balls in a sample of 7, balls willydiffer from p by as much as + (P — P, (B) how often will it
happen that the proportionsefslack balls in a sample of ¥, balls will differ from P by as much as
£ (p —p,). Should thestheoretical frequency of either event he very small, we should have
teason to doubt the truthyof the hypothesis that one or other sample came from an urn in which
the proportion of blgekballs is p.

Actually, we de not know the exact numerical value of ?; and we can construct a sull
hypothesis only if)we make an estimate of it. Provisionally, we shall first make an estimatc on
the basis of 2 the information at our disposal, In conformity with the condition stated above we
shall also assume that the total number of balls in the urn is very large or—what comes to the

¢ replace each ball taken before drawing another.
» WE may treat each as part of 2 single sample
of (12 + 8) =20 balls out of which ©+4)=

= 13 are black, The initial assumption we thus
explore is that the proportion (p) of black balls in the putative common urn identical with A
and Bis (I8 + 20) — 0-65, so that g=(1—p) =035 For samples of 8 and of 12 balls taken
from such an urn successive terms of (0.35 + 0-65)8 and (0-35 + 0-65)12, as in Figs. 38 and 39,

respectively, give the theoretical frequencies of samples containing 0, 1, 2,3 . . . & and 0, 1,
2,3 ... 12ballk.

Since the proportion' of black balls in sample B is 05, the observed deviation from the
mean value (0-5 — 0-65) is numerically equal to 0-15. Thus part of our problem is to decide

how often it will happen that the actual proportions of black balls in an 8-fold sample taken from
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F16.¥39. Rupectation that the proportionate score deviation for a 12-fold samﬁfé:'will be less than 4= 0-10 when
i the probability of suceess is 13 in 20.2°()

5 )

an urn containing an indefinitely large number of black and white balls in the ratio 13 : 7 will
differ from 13 - (13 +7) = 0:65 by as much as 0-15({ “To answer this we first ask how often
the proportionate deviation will be less than + 0-15,'i.e. how often the proportion of black balls
will be greater than 0-500 and less than 0-800, Fig. 38 shows that this is so only when the
mumber of black balls in the sample is 5 or 6., :”The total frequency of such samples is

8! - 81 o A
515 (0-35)3(0-65)° + &on (0:85)%(0-65)° == 0-2786 +- 0-2587 = 0-54.

Thus the theoretical frequency of sgmbles containing as few as 4 or as many as 7 black balls, i.e.
the frequency of samples in which the proportion of black balls differs numerically from 0-65 by
as much as 0:15 is
& 1 — 054 = 046.
If our null hypothesis i§/eorrect, the odds against a deviation of this magnitude are thel:eff)re
27 :23. Inother Woﬂsz we should expect to score a deviation as great as the observed devla'no?
nearly as often as fo\store a smaller one. 5o £ar as it involves the sample from urn B there is
thus no suﬁicie;xt;’réason to suspect that our rull hypothesis is incorrect. .

Let us<ndW consider the sample from urn A. 'The observed proportion of black balls
is 075 which"differs numerically from 0-65 by ©-10. ~ Again, the proportion of black balls
(Fig. 39) in only two sorts of samples (score 7 or 8) lies inside this range. From Fig. 39 we

see that the theoretical frequency of such samples is

12 12!

120 a5 065Y b e (0-35)4(0:65)° = 02030 + 02367 = 0-441.

o15; (038)5(068)7 + g ( y4(065)
Thus the expeetation of a proportionate deviation numerically as great as 0.101s
Approximately, the odds in favour of a deviation as great as the obsetved one are thc.rei:ore 5:4.
In the long run we should therefore expect deviations as large as the obsen-ed;lewanon to be
somewhat more frequent than smaller ones. So this result conveys no reason Lo suspect that
cur null hypothesis is false.

1o
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Fre. 40. Expectation that the proportionate score deviation fol%l: 8-fold sample will be at least as great as 0-25
<5

when the probability of success is 0-25. The appropriate modp}i: e choice of 8 cards from a full pack subject to

replacement, hearts beidg successes.

®d
&Y

We shall later see that the form we ,héf}}é chosen

can do in such a situation ; but whatewer clse we do, we have to make an estimate of p. To
do this we have pooled all available idfprmation which is relevant if our null hypothesis is truc,
Meanwhile, we are entitled to explofe other possibilities. For instance, we might prefer to
assume that the observed prop ‘1§1{1 of black balls in urn A is as observed (0-75) in the 12-fold
sample taken therefrom. JImythit case we are concerned only with the question: how often
might we get from an uri{ 86" constituted an 8-fold sample like the one from urn B? Again,
we might prefer to assifme that the observed proportion (0-50) of black balls in the sample
from urn B is the aghualproportion of black balls therein. If so, our problem is to decide how
often we might get from it a 12-fold sample, such as the sample from urn A.
Let us now examine each of these hypotheses in turn.

(¢} If €heyobserved preportion of black balls in the sample taken from urn A is the actual

proportion therein, the frequency distribution of 8-fold samples, such as the sample from urn B,
8 given by the terms of (} - 2)8. The proportion of black balls in a sample from B is 0-5 which

differs numerically from 0-75 by 0-25.  Qur problem is now therefore to determne the observed

freguency'of 8-fold samples in which the proportion of black balls lies inside the range 0-75 4 0-25
as 1s true if the score is 5-7 inclusive, Fig. 40 shows that

E(< 0-25) = 0-2076 - 0-3115 + 0-2875 — 07866
E(> 025) = 1 — 07866 = 0-2134.

for our null hypothesis is not the best we

that of of urn A, 'These are not highly unfavourable odds against the validity of our null
hypothesis.
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probability of success is 0-5. The appropriate model is the choice of 12\¢ards from a full pack subject to replace-
ment, a red card being a sugteds!
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{b) Tf the observed proportion of black ballsd the sample from urn B is the actual propor-
tion therein, the frequency distribution of 12-fald samples, such as the sample from urn A, is
given by successive terms (3 + £)'% The pﬁo’portion of black balls in sample A is (-75, and this
differs numerically from the assumed pteportion (0-50) in urn B by 0:25. In accordance with
our present assumption we have therefote to ask how often the proportion of black balls in a
12-fold sample would lie inside tkﬁ{i‘mig& 0-50 + 0-25, as is true {Fig. 41), if the raw score is
4-8 inclusive. Fig. 41 shows tha :

E (< 0:25) = (4908 + 01984 1 02256 + 0-1934 - 0-1208 = 0.85.
E (> 0-25)40°15.

Thus the odds are 1€sd than 6 to 1 against a deviation of the observed magnitude. In other
words, we mighﬁ.\e:)ijject the oceurrence of a deviation as great as the observed one in about
one-seventh gf*a'wery large number of samples. This is not remarkably infrequent ; and the
observed compésition of the sample from urn A is in that sense consistent with the assumption
that urn A has the same proportionate constitution as the sample from urn B.

Some assumption about how far either sample or both samples taken together yield a repre-
sentative value of a sufficient parameter of the universe, in this case p, is necessarily implicit in
any treatment of the recognition of a real difference. This raiscs the question : have we any
rcason to prefer one or other estimate of p so far discussed ! Bernoulli’s theorem of 3.08 supplies
the answer. The estimate p,, (= 0-65} of p which we get by pooling all our data refers to a
larger sample than either of the estimates desived from observation of one sample alone ; and
Bernoulli’s theorem tells us that large score deviations occur with greater frequency in smaller
gamples than in larger ones from the same universe of choice. In the long run, the estimate
., which we get by pooling all our data will therefore be less liable to mislead us than an estimate
based on one or other of the individual samples.
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4,02 SAMPLING DISTRIBUTION OF A PROPORTION BY THE (-TEsT

In 401 above we have made a first approach to the recognition of a real diffcrence by
adopting the null hypothesis that

(@) our samples are referable to a single parent universe ; - . _

{8) the pooled proportion (p,,) of items of a specified class in the combined sample is the
best estimate at our disposal of their actual proportion p in the putative parent universe,
The problem then reduces to the evaluation of the expectation that the proportionate deviation in

(i) a sample 4 of a items among which the observed proportion is P, will be as greut as

Py — Py ,
(i) a sample B of b items among which the observed proportion is p, will he as great as
pab _Pb‘ '\.\\

"N

So stated the issue is precisely on all fours with that of 3.02 except invso far as: (a) the dis-
tribution involved is that of a proportionate score deviation in confradistinction to that of the
score deviation itself ; (b) the assumed mean proportionate score{(P,,) is merely an estimate of p
the corresponding parameter of the putative parent universe, \\For the present, we shall assume
that p,; is a good estimate of p, in the sense that no large, &tror arises from the substitution of
Py 20d Gg = (1 — py,) for pand g = (1 — p) in the binbthial (g + )" definitive of the propur-
tionate score distribution of 7-fold samples taken from@ur universe. In 3.05 we have secn that
it is possible to sidestep the work of computing :E(> X} by recourse to the table of the
probability integral when 7 is large. We shall therefore examine the use of the c-test w.r.t, the
significance of a proportionate score deviation{B(> U) as one way of finding an answer to the
question raised in 4.01. Later (p. 217) welshall see that it is not an efficient method of doing

80, in the statistical sense of the term. ¢ '
Meanwhile, it is necessary to remind ourselves that any justification for doing so depends
~ on the fact that one and the samd¥aliie of Y =" - p7. "% specifies for an 7-fold sample the
frequency of a particular raw scpri}x), the corresponding proportionate score (4, = & = 1), the

corTesponding score deviation (K= » — p) and the corresponding proportionate score deviation,

vchich we may write as A\

) X
&kﬂ mz?z%—p
Accordingly we gfigiy:'express the critical ratio ¢ (p. 128) as any of the following :
b X — 7p)2 — 2 2

(1) 2 z( mgp) - (-‘Xr' Vrp) . (ii) c? — £ — {2.

rpg ¥V

— Hi2 : 2
(if) o2 = B 2)° )t Uz
(pq +7) W =~ 7y

Let s now cxamine the meaning of the ratio {pg < 7) in (iif) and (iv) above. 'The quantity
pg = V in (i) and (ii) we have secn to be equivalent to the mean square score deviation given by

(iv) in 3.08, i.e.
V= { z P o 7. g7 xﬂ} — 722,
x=[)

In this .equz}?ioz.l 7p is the mean scare, the mean proporticnate score being p (p. 102). In accord-
ance with (iii) in 3.0 the mean square proportionate scove deviation (V,) is therefore given by
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r=r x a2
V. :{Z Tl - P° . ¢F -(;) }—sz

z=10
iV, =V =rpg,
LV, =g+ . . . . . . . oW
Hence we may write (iii) and (iv) above in the form

22M=g

[4

Vu V‘H
{11 accordance with previous usage, we denote the square root of the variance of the proportionate
SCOre s o\ .
au:‘VVuZ,/IE . e N . . (Vi)
. i o .
4 )
Hy — \ .
¢ = -_-—'f_% . L EONC . . . (vid)
(pg <7} 7\

. . ~N .
The observed proportianate score () of the sample 4 is pys\and the assumed value of 2 with
which we are here concerned is the pooled value p,. Ife neglect the half interval correction
For continyiiy defined by (iv) in 3-05 we take as the up;@f}imit of integration from zero to A :

3

Pu — P :QP;'_Pnb 1
k —_ _— — . . . - viu
o Ml —Fa) T P e

Alternatively, to test the significance of the difference p, — p,, we put

P4\

e D T P T
\\’ [pab(l - pab) - blé
Whether it is necessary to make the correction for continuity depends on the size of the sample.

When we are concerned with“the expectation that the score or score deviation will respectively
be as great as x or X, Wg;}ﬁ’t '
) —1
A P |
.j‘.'; '\/7PQ
AN

When we aré edficerned with the expectation that the proportionate score deviation will be as
X‘?k Xp prop

great as U7, We may write this as
X 1 1
(5 -2) Uy

k e e "]
Vrpg Vipg +—7)
vl
— P ¢ 3
U“
Hence (viii} becomes
1
(Pa, - Pab) - é;
h

T [poll — Py = alF
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Example. Greenwood and Yule (1915) cite the following results w.r.t. cholera inoculation
Attacked ToTaL
Inoculated . . . . . 3 279
Mot incculated . . . , 66 539
All . . . . . . 69 B18

To perform the ¢-test in accordance with the foregoing proportional procedure we may sum-
marise the above thus :

Per Cent, Size of

Attacked Sample
Sample A (fmoculated) . . . 11 279 A
Sample B (not inoculated) . . 12.2 539
Pooled sample . . . . 8-4 o81:8~

'\
To say that inoculation is not effective is to say that samples distinguished merely by the fact
that individuals have or have not submitted to inoeulation are sathples from the same universe
or from identical universes in which the proportions of attacked and exempt are the same. As
our best estimate of the proportion of attacked in the putdtive common universe, we take the
pooled value, i.e. SN
Py =0084 (D

(Ps ~ 2g) = 0-011-0€084 —~ — 0.073

(2, — ) = 0-122:0:084 = 0.038

To test the signiﬁcance of the first deviatiop.'(f—j;‘ 0-073) we have to find the standard deviation of
the distribution of p =Py, for a sampleBf 279 items. In accordance with (vi} above, since
£g==(0-084)(1 — 0-084) '
£ (0084)(0.916)

o o, = V000028 ~ 0-017.

Since 27915 a fairly laf'g\{:}zfmplﬂ, we neglect the correction for continuity and put
N 00T
N\ T0017 T

The fdeviat' nis thus. a_.bogt 4-3 times the assumed standard deviation ; and it is not necessary
to refer to tl}e probability integral table for assurance that such an occurrence is very rare, if the
assumption 1s correct. T'o test the significance of the alternative deviation we put
5 _ (0-084)(0-916)
ol = 539 = 000014,

. o, =~ (012,

Accordingly we put
0-038

In this case the deviation is over three times its assumed standard deviation and is again highly

significant ; but the second test i insigni
sign unnecessary, and an insignificant r i i
in view of the result of the preceding test. » i i resule would be immateria
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Noymal Integral of the Proportionate Score Distribution

Since there is a one to one correspondence between the proportionate score and the raw
score, we have assumed that it is equally legitimate to apply the ¢-test to the distribution of the
former, if appropriate to that of the latter ; but the reader may wish for more formal assurance

that this js so. Accardingly we shall denote as the area defined by the boundaries X ~ vV, =0

and X - VvV, =h:
X k7, VT b'¢
_ -3 —_
[A:! = (27V.) L exp ( 2Vm)dX'

X=0

If Uis the proportionate score deviation corresponding to X, dX = d(rU).=xdU; and if
V. = {pg - r) is the variance of the proportionate score distribution, ¥V, = Va '+ 7%, so that
V,=+>.V,=171%. When k= (X~ o), ie. X=hVV, we thcrgfg’fb}lave yU = rho,

w
and U = ho,. The above is then equivalent to « O

74

[A] Z:T R j: T p (— Qgggi&%m)
_ r, “ exp (T é%)‘w.

a,V2xdo
We now put ¢ = U + oy, so that ¢ is the propor‘rio,r}aie ‘score in its standard form, i.e. expressed
as 80 many times the's.d. of the proportionate SCQIe distribution. When U = ko, we then have

€=k and dU = d(o, . €) = oydc, so that (™

!: coa bl 1 Jc=k io*d
A ‘\E ' o
\”:ﬂ{i. v p Te=0

It 1s perhaps worthwhile to comnfeht on the outside limits of the integral for the distribution.
The range of the binomial histhgram for the raw score extends from —7p to 74, hence .frolm
— @ to - oo when 7 is ifdefinitely large. Irrespective of the value we assigh to 7 the limits
of the proportionate scg{éﬁiétribution extend from — p to g, but as all frequencies I_l?fe{ablﬁ to
a score less than — p engreater than g are zero, it does not affect the value of the definite mt?gral
for the whole area-of the distribution if we extend the range from — o0 to 4+ oo. A pitfail
which calls for éﬁﬁﬁﬁlent is the implications of the scalar changej from X to U = (X + r), when
we derive the fréquency equation of the proportionate score in its normal forn}. We the‘n ha\ie
to remember that the frequency Y, of the proportionate score wh:ose aumerical value is U is
the frequency Y, of the raw score deviation whose numetical value is X = 7U, so that

LY, = Y, = (2mpg)texp (— X* - 21p9)
= (2mrpg)* exp (— U2 = py).

. . . .. . . . N
For the variance of the proportionate score distribution, we have V= {(pg < 7), 80 that rpg =1V

Thus the normal equation of the proportionate SCOre frequency is *

1 (—~ U‘z) .
YB = = EX, . (X]')
Vorrtl,, P\ 27,

*See remarks in 4.08 on pp. 183-6 below.
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EXERCISE 4.02

1. Examine the following data of Greenwood and Yule w.r.t. typhoid inoculation :

Attacked Not Attacked
Inoculated . . . . 56 8,759
Not inoculated . . . 272 11,396
Total . 328 18,155

(Cited Fisher, Statistical Methods, p. 85.)

2. Test the following data cited by Kendall {Vol. I, p. 302) w.r.t. inoculation_égainst cholera on
4 tea cstate

Attacked Not é‘fmﬁked
Inoculated . . . . 431 o 5
Notinoculated . . . o9 LY 9
Total . 722 O 14

8. Test the following data cited by Kendali (Vol. I, p. 307:)21‘}0';11 an official report on the Spahlinger
treatment of cattle exposed to infection : \

Severe Tuberculosis Mildly affected
(including, Fatal Cases) or Immune
With vaccine treatment . . LY 6 13
Withoutdito . . % g 3
Tow . O 14 16
4. Examine the following data,al3o Gited by Kendall (Vol. I, p. 304) :
\ With Tooth
_ \ Teeth Normal Maloccluded
Breast-fed "\ Y . . 4 16
BonIc-fg&\" . 1 21
) Total 5 -3_7

t5. In U.E.‘ Public Health (1938}, Vol. 51, p. 443, Dr. Selwyn Collins cites the following data
W.I.t. & smallpox follow-up of 8000 families in 18 States over one year :

Population Cases of

) ) at Risk Smallpox
No history of vaccination or prior attack | , . 16,603 18
Vaccinated over 7 years eatlier . : , . 11,793 1
Ditto less than 7 years earlier | . : : . 8,769 0
Previous attaclk . . . 1,157 0
Previously attacked or vaccinated at some time | . 21,719 1

Examine these figures w.r.t. relevance of

. coinati -1 :
discuss sources of Yyaceination or previous attack to subsequent risk, and

€Ironeous interpretation to which treatment of such pooled data is open.
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403 A Raw ScoRE DIFFERENCE SAMPLING DISTRIBUTION FOR SMALL
Equarn SAMPLES '

At a Iater stage (Chapter 5) we shall examine the logical implications of the fact that our null
hypothesis in this context prescribes no exact numerical value of the parameter p which we assume
to be very nearly the same as p,; in making the tests of 401 and 4.02.  We shall then sce that it is
possible to give precision to what uncertainty invests the ¢-test on this account. ‘Apart from
this, the provisional test dealt with in 4.02 introduces only one feature not dealt with in the
previous chapter, namely, that the distribution with which we are concerned is that of the
preportionate score (x < 7) or its deviation from the mean (p) in contradistinetion to that of
the raw scove (x) or its deviation from the mean score (7p). There is in fact a gne-to-one corre-
spondense between proportionate score and raw score, the frequency of a given raw score
being thercfore that of the corresponding proportionate score. Hence thé ouly novelty of the
method set forth in 4.01 is the verbal interpretation of two e-ratios which are In fact numerically
idertical. 'What we call in one case the ratio (X =- o) of the score dg«fi;_tﬁon (X) to the standard
deviation (¢, = V7pg) of the raw score distribution, we may alterQafjvely call the ratio of the pro-
portionate score deviation U, — (X <+ r) to the standard deyiation (o, — vpg - 1) of the pro-
porticnate score distribution, O
Tie form of words used in the last sentence merits fomment, because a standard deviation
or 2 variance in this context is a parameter of @ distribution. Hence to speak of the sd. of a
score or the s.d. of a proportion is misleading, and p,afﬁcillarly liable to cause confusion in connec-
tion with the use of variance or s.d, formula as statter indices of the class frequencies of items
to which we can assign a measurement or ordip&i wank specification in a particular sample. This
will become more apparent at a later stage when we extend to representative scoring {vide 4.10 z'fzfm)
the mathematical theory of probability here applied to taxonomic scoring w.r.t. a binary classifica-
tion. We shall then have to draw a shiafp distinction between two classes of frequency distribu-
tiens, w3, : (a) r-fold sampling dl‘s{}iButions with. which we are solely 'concerne.d in this a}ui in
previous chapters ; (b) probabillty (or unit sample) distributions which specify a particular
universe of many classes. When we are concerned with a binary classification of attributes,
such as hearts and other cards, the probability distribution of the universe is simply-¢g + 2, the
terms of which refer re{ﬁéétively to the proportion of items or occurrences of terms labelled as
suecesses and faflures{ N .
If we test the ,sfg;hiﬁcance of a difference as prescribed in 4.02, our ¢-ratio involves an error
of estimationobofh\’in the numerator and in the denominator. 'Though subsequent examination
of the problenhef estimation as such will indicate the possibility: ?f assessing the frequency with
which errors of judgment will arise from so doing, the recognition that thfe procrt'dure of. 4,02
does in fact do so serves to focus attention on the possibility of an alternative which entalls.no
error in the specification of the numerator itself. "Fo keep w;ithin the framework of samphpg
distributions clucidated in the previous chapter, we have committed ourselves to an unnece‘ssarﬂy
circuitous formulation of our problem, and in consequence to a procedure which entails 'the
performance of two ¢-zests to answer a single question, We have formulated our Problen} in a
way which commits us to examine whether the structure of each of two samples is consistent
with the null hypothesis ; but an ap propriate null hypothesis is indeed amenable to more cln:ect
statement. Instead of asking how often proportiopate scores of each of two ’samples will .dewate
to a greater or less extent from the parameter p of a pufative common Universe of choice, we
shall now ask : how often does the difference between score values of samples from the same
universe or from identical universes attain a certain numerical magnitude ? We_can answer
this question only if we know the sampling distribution of a score difference. Nothing we have
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HEART SCORE DIFFERENCES ~ PAIRS OF HEART SCORE DIFFERENCES - PAIRS OF 2 —FOLD SAMPLES {p=ta qa i)
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Fie, 42, Heart Score Differences— Fra #% “' ' .
pairs of 2-fold samples from a full e v ?' . '
Each

pack subject to replacement.

cell centre shows the value of the

score difference (A} zhove and the
frequency below.

L

X

F1¢. 437 'The balance sheet of Fig. 42,

o
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Fic. 44, Heart Score Differences—pairs of 4-fold samples (p=%; ¢ = P,

learnt so far tells us that it is

subject to replacement,

exactly, or apprommately, referable to a binomial, to a normal or

to an otherwise specifiable pattern. Tt is an issue sui generss, and one which therefore invites
mvestzgatlon on its own merits.
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HEART SCORE DIFFERENCES ~ PAIRS OF 4 -~ FOLD SAMFLES G- q- %}
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Fi1e. 45. The balang?,sileét of Fig. 44,

™
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Our model set-up for a preliminaryinvestigation of this sort will be two full card packs A
(right hand) and B (left hand). Thedifference we shall first explore is the difference between
the right hand rew score and the | %t "hand rew score, i.e. the result of subtracting the B score
from the A score. To start with, we shall assume that each trial involves withdrawal of an
equal number of cards from ¢He two packs. This imposes a limitation which it will be necessary
to remove at a later stagegybut simplifies the task of visualisation as a prelude to a more general
treatment of the probledi)™ We shall assume replacement of each card drawn before withdrawal
of another from the &ame pack in conformity with the assumption that we intend to use the
results of our analy8i$ in connection with samples which are relatively small compared with their
parent univerges..) Accordingly, we can use the customary binomial expansion for the distribu-
tion of scores of/samples taken from one and the same pack. For instance, 2-fold samples from
either turn up with heart scores of 0, 1 and 2 defined by successive terms of (§ + e, a‘nd 4-fold
samples turn up from either pack with keart scores of 0, 1, 2, 8, 4 defined by successive terms
of (3 + )% Figs. 42 and 44 show the chessboard lay-out for pairs of 2-fold and for pairs of
4-fold samples, citing the frequency of independent association of a sample fr?m a pack A w1tl} a
particular heart score and a sample from pack B with a particular heart score in conforming with
the product rule of 2.06. In conformity with the addition rule we can collect al.l suf:h results,
and express them as in Figs. 43 and 45 which respectively show the sampling distributions of the
heart score differences for pairs of 2-fold and 4-fold samples.

Two features of the distributions of score differences for pairs of 2-fold and 4-fold
samples exhibited in Figs. 43 and 45 are generally characteristic of score difference
distributions of pairs of samples of the same size, as is evident from the structure of the

chessboard diagram :
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TABLE 1
Frequency Distributions of Heart Score Differences for pairs of 2-fold and 4-fold Samples

, ' Ya
Score Difference | po. ) o &+ 3 Pairs of 4-fold 4+
X Samples. Samples.
—1 — — 00012 0-0039
—3 — — 0-0165 0813
—2 0-0352 0-0625 0-0873 0-1094
-1 02343 0-2500 0-2324 0-2188
o 0+4609 03750 0-3254 02734
1 0-2343 N 02500 0-2324 A, 0-2188
2 0-0352 0-0625 0-0873 0-1094
3 — — 0-0165 SO\ 00313
4 - — 0-0012 L\ 0-0039
\

P
3
o Y

N

(@} Since they are always symmetrical about a mean diffbrence of zero, Le. positive and
negative deviations which are numerically equivalent ogur with equal frequency, the mean
score difference is also zero, \ ¢

(8) The number of terms in the distribution 2 + 1. Now the binomial histogram is
exactly symmetrical only if p = } = ¢; and the enly binomial distribution which could exactly
- correspond to one of the type under discussioh Is therefore the expansion of (} — 1)¥. The
accompanying table (Table 1) shows that the\ffequency distributions of Figs. 43 and 45 are not
1dentical with successive terms of the expansion (§ + ), being in fact more steep in the middle
of the range. That it is in fact less flst means that the use of the binomial for an approximate
evfaluatmn of significance levels o@ld"give a too high expectation for large deviations. If we
did so we should not therefore ehy overstating the odds against a difference being as {arge as

observed. Thus reference tothe half of the table which exhibits frequencies for pairs of 4-fold
samples shows that CH

A
\:;“.’ E(> 3) = 2(0-0012 + (-0165) = 0-0354.

LN
g‘he true odds agatiist getting a heart score difference numerically as great as 3 in a draw of
hcards from_ ;:g.\c}"l\.of 2 ful.l pz‘acks‘ are therefore roughly 965: 85 or over 27:1. If we acted on
the assumptignithat the distribution approximately tallies with the terms of (} + %)%, we should

infer an expectation of 2(0-0039 + 0-0313) = 0-0704 d
. — ’ ? d : ‘
14 : 1 against the occurrence, ) 7ol of roughly 9537 or less thas

¢ The study of t}}ese CXaf'nples does not at first sight encourage the hope that the distribution
of score dlfferences 18 reducible to a normal type ; and hence that the assessment of a significance
dlﬁerﬂ}ce 1s amenable to a c-test.  On the other hand, we have scen that the normal distribution
approximates most closely to the exact distribution of a small sample, when p == L — ¢g. This
i]?:’r'l?sgsdlilsirgﬂbu?plor.e the colour score d:Lfferenc:*e, in contradistinction to the heari-score dif-
(heart or diamonlc?)n::e:;'fl- thlf frequency with which the difforence between the number of ed
Fins, 49 and 44 S chosen assumes particular valucs, From the chessboard diagrams of
g we can derive the colour score (red-black) difference frequencies by making the

substituticn § for both tand 2, o7z
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involving unegual values of p and ¢,
should sxnect to give the best fit for the distribution of t
}* having the same variance w.r.t.
to ask: what is the variance (V) of the distributions exhi
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binomial {}

THE RECOGNITION OF A TAXONOMIC

Seore Difference

~ 3

)
—4
— 3

N L

For Samples

of 2

HEN
43
6(h*
Hht
1)

if the samples were large.
he heart score@ifference would be a
the raw score distriby»tipri. We have therefore
bited ifiNFigs. 43 and 45. It will

the frequency of a difference d by y,, (1) in 3-06 becomes

d=44

V,= z Vg - 4

=4

Since the mean difference (M) is zero

The summation is easiest to perform if wé reverse the order of ter.

é=14

X
AN

R

% <

Vo= 3

g e )

board sct-up of Fig. 44 as in Table, IA-\

Score

=]

1

Frequency
(0-25)
4(0-25) 3(0-7&
6(0-25)%(0.75)>
4(0-25)(0-75%)

(0-73)4

¢ /
. 5%@2

DIFFERENCE

157

For Samples

of 4

1@y
8(3®
28(3)°
56(3)°
70(3)°
56(3)°
28(3)°
8(2)°
1(3*

rence of samples of equal size thus correspond
This gives us some encpuragement for
rectly describe that of ageore difference

If so, the binomial which we

4fold samples. If we denote

ms in one margin of the chess-

N\
o \ TABLE 1la
o NG 1 ' 2 3 4
OISV HOTHHES) 6075025 4(0-75)(0-25) (0-25)
A\
D~=\\_“4 D= -3 D=-2 D=—1 D=1
(@TBy0-25y | A0T5)0:28) | BOTSHO-2) 4{0-73)(0-25)7 (0-25)8
AR
NYp—_3 D= —2 D—=-—1 D=0 D= +1
HOTEP0-25) | 160075 HD-25)* 24(075)(0-25)° | 16(0-75)%(0:25)° | A(07)(0-25)
=2 D=—1 D=0 D=1 D=+2
80T3(-25)? | 24(0-TB)H0-25) 36(0-75)H0-25) | 24(0-75)(0-25)° | B(075)(0-25)¢
=—1 D=0 =1 D_=-I—2_ D_-T-FS'
4({?75)7(0-25) 16(0-75)5(0-23)* | 24(075)%(0-25)* 160-73)(0:23)¢ | 4(OTSO028)*
- D=+1 D=+2 D= +8 D= +4 "
J(%-?:;ﬁ A0-75)(025) | B(OTH2)? HOTEFE(0-25)0 | (OT5P025)

A pattern now emerges if we apply the device alre
the Figurate number table of p. 26. Thatist
one row, the third column downwards two rows,

0 say,

and so on, the result being

ady used to derive Pascal’s triangle from
we slide the second column downwards
as shown in Table 1B.
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TABLE Im

Difference Frequencies

—4 (0-75)40-25)¢

—3  A0T5)0-25) + 4(0-75)%0-25)

— 2 B(0-758(0-25)% L 1B(D-TS(0-25) £ 6(0-75)(0-25)8

1 AQTI5)(0-25) + 24(0-75)(0-25)° + 24(0-75)%(0-25)5 - 4(0+75)(0-25)7
o (0-75)5 + 16(0-75)50-25)F + 36(0-75)%(0-25) + 16(0-75)%(0-25) + (0+25)8
1 4(0-75)(0:25) + 24(0-75)50-28) + 24(0-T5)3(0-25)8 - 4(0-75) (0-25)7
2 6(0-75)%(0-25)% + 16(D-75)40-25)* -+ 6(0-75)3(0-25)8
3 HO-75)(0-25)% 1 4(0-75)%(0-23)°
4 (0-75)%(0-25)4

From inspection of the first column of frequency terms, we see that the sumds in fact

(075)% . (0-25 + 075)% = (0-75)". < O

Similarly, the sum of the terms in the second column is

4075 . (025)(0:25 4- 0-75)* — 4(0-75)7(6225)
In this way we arrive at the following table of column totals S\

Column ‘x"ﬁ‘fytal
ABF5) x (0-25 + 0-75)8
4(0-75)0-25) X (025 + 0-75)
8(0\75)%(0.25)% x (0.25 + 0.75)
LHO75)(0.25)° % (025 + 0-75)
(0-25)% X (0.25 + 0.75)

L I R

To elucidate the pattern of weighted squate differences, we may now use p = 0-25 and ¢ = (+75

throughout.  Since (d — 4)% = (4 -—d‘)}‘, we then see that the sum of the weighted squarcs in
col, 1is N\

M=4 4

{ |
./ — e : LRI
:"’\‘g‘.} dgu (d ) d!(4—d)!P q"

Similarly, the sum of thg?%}%?lghted squares in col, (ii} is
& ¢ 41
N Apg® D (d—3)2 ——— __ pa=8 g
DNCE) aa—m? e

~O
The total of ‘Ehe'waighted scores is therefore the sum of

gt (d —4)2. 4, . p+2, q%;

[ c;M,h.

4pg® z (d —3)2. 4 . p+2, q%;

[#3]
=)

e
L)

]

(d—2)2. 4, N R LY

2 " 4“1} 'P4_d . gﬁ;

e
r-

&
FQ“
M= oM oM ©
=
[
=

(d—0)2. 4, .p+¢, gt
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We may write this total as
a—4

r=4d
D AP0 > (d—a)P Ay pt0 g0 i . )
=10

a=10

Since (¥ — d)? = (d — x)? = (d* — 2xd + a?), the general term of the second summation is
equivalent to

d=4
Z (d2 — 2xd + xz) . 4“;] p4—d qd . . . . (ii)
d=10 .

Since x is constant in each such expression, we may bring it outside the summation sign, sa that
(it} beeomes N\

A= d=1 d=4 N\ ¢
2. At Ay ptt gt — 2 > d. 4y Pt gt o > 4&:{3\-"1}4_64“-
d=10 d=0

dmg
From (iv) in 3.06 ¢ :\ : .
d=4 "‘\
D @Ay pT0 ¢ =Apg+ (49) = 4pg - 1692 . . . {i)
d=0 \\«
Also, as we have seen (p. 102) in 3.01 \ *\ '
duad ’:' N/ )
z d.4{d13ﬁf@jgd=4g . . . . . (V)
d=0 N
By definition ; SN |
demd <
z 4{&..:;,4—13 gt =(pF 9t = 1. ; . ; . v
d-O’\\"’

Hence (i1} becomes O™
N\

x'\ »,
:"\'$~
'\\w

4

dpg + 16¢* — 8gx -+ =%

Thus {i} reduces to

e} 3

x=4 N :
> 4 .pzf::j}f . (4pg -+ 164® — Sgx + x7)
4 xemd

r=4 x=4 —
= (4pg + 16¢%) D> 4w - p* . ¢ — 8¢ > x4 PTG +xZox2 A D

e () x=0
By means of the relations in (iii)-(v) above, this becomes
4pg + 16g* — 32¢% + 4pg - 16¢* = 8pg.

The student should without difficulty be able to generalise this result:., i.e. to show .1:hat fo;
pairs of r-fold samples from a universe specified by p successes and ¢ fallyrcs, t.he vanar;cc 0d
the difference distribution is 2rpg. For the particular case under consideration r =4 an
2 = %, so that '

v, = 8(0-25)(0-75) = 1'5.
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For the binomial (} - 4)7 of which the variance of the raw score distribution is 1.5, the numerical

value of r is given by
va g rpg = (0-5)2r = 1-5,

. r=06.

Accordingly, we shall now examine how far the heart score difference distribution w.r.t. 4-fold
samples tallies with the terms of (§ + 1)° for corresponding dewiations as exhibited in Table 1c,

TABLE 1c
Individual Frequencies, Cumulative Freque;l ies.
Score Difference " \‘ N
or Deviation, Pairs of 4.fold Single 6-fald Pairs of 4-foldz\N Single §-fold
Samples (p = ). | Samples (p = 3). | Samples {p fi)‘ Samples (p = I\

—4 0-001 0-000 ooy 0000
—3 ' 0016 018 QOB 0-016

— 2 0-087 0-094 NO-105 0:109
-1 0-233 0234 AN 0-338 0-343

0 0325 0-313 & & 0-662 0-656

1 0-233 0234 NN 0855 0-881

2 0-087 0094\ 0882 0-985

3 0016 0016 " 0-999 1-000

1 0001 Qap0 1.000 1-000

™
Ny

The correspondence exhibited by these figures is rewarding, especially if we compare the
columns setting out the summated frequencies which specify the expectation that a difference or
deviation will be as great as 2 Particular value shown in the column at the extreme left.

§ EXERCISE 403

. 1 'By ﬂlei Shdm% chessboard method of 4.05 show that the variance of the raw score difference
dJSt“bm“m@r:PmS of r-fold samples taken from the same universe with replacement is 2rpg.

8. Tor samples of equal size, find an expression for the weighted mean cube of the raw score
difference (third moment).

3. Evaluate the weighted mean of the 4th power of the raw score difference w.r.t. equal samples
from the same universe.

4, US(? the mthod of 4.03 to show that the mean difference of two sample raw scores taken from
the same universe without replacement is the difference between the sample means.

5.. By the same method, show that for the distribution of score deviation differences w.r.t. samples
respectively composed of 4 and b items the variance js (& + b)pg.
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404 Mzran ScORE DIFFERENCE W.R.T. SMALL SAMPLES OF DIFFERENT
SIZE

For simplicity, we have hitherto discussed samples of equal size; but it would be incon~
venient to restrict comparison of samples by insisting on this limitation. Within the framework
of this assumption, our method of scoring the result of an individual trial is immaterial, and the
raw score is the most direct method of recording the result.  For reasons which will now appear,
other methods of scoring are more convenient when samples of the same pair are not of the same
size,

Any significance test of the sort we have examined so far presupposes the possibility of
defining the expectation that an observed quantity will lie within or outside a certain range of
values on cither side of its mean. 'To do this we must know where the mean lies ; and we
know that the mean raw score difference is zero when the samples are of equal'size. Table 2,
which sets out the frequency distribution of raw score differences for pairs\of 3-fold and 5-fold
samples, illustrates the truism that the range of negative score differefiges is greater than the
range of positive score differences if B is the larger sample. ‘Thus the-mean raw score difference
is not necessarily zero, and in general will not be zero, if the sat{léles are unequal.

TABLE 2 \\ )
Raw Score Differences for Pairs of 3-fold and 5-foId’S%m'§!e: with Corresponding Frequeﬂ.cies

SampLE A {3, shends)

Scorz (x) 0 AN 2 8
Frequency (v} q° N\ e 3 P
0 5 0 5 1 2 3
q ﬂg“' ‘.\ Spq'l' BPQQS Psqﬁ
& :
1 5pgt \ A 1 0 1 2
N\ 5pg7 15p%* 13p%5 Spig
SamMpPLE B N o .
(5 fiems) 2 105243 AN/ —2 —1
£ ‘{\’\ 10p° 30p%¢° 30ptg* 10p5g*
PO —3 —2 —1 o
N e 10p2g* 30p%q* 30p°g° 10p%¢*
N
A\ Neo ; - 1
4\ 5y 4 -3 —2
\ > Splgt 15456 15p%g* 5p'g
5 5 5 —4 —3 —2
d p’q’ 3p*q® 3pq b

In what follows, we shall therefore explore the difference distribution Qf t_he score devtat-lon
(X), the proportionate score (#, = ¥ + r) and the proportionate score deviation (U, = X +7)
in samples of unequal size ; and it will be helpful if we first recall what we do w}fen we score
the result of taking a single sample from either pack by one or other method, as it ?.ﬁ‘ects the
way in which we score a pair of differences for unequal 'samples jcaken from two identical p?.cks.
The schema below (Table 24) refers illustratively to pairs of which one member (A) contains 3

cards, the other (B} 5 cards.
11
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TABLE 2a
SampLE A (3 items) SaMpLE B (3 items)
Proportionate i Pronortionate
Raw Score Proportionate Seore Raw Sc_cm_e Proportionate Seore
Score Deviation Score Deviation Score Deviation Score Devietion
(xa). (). {Ua). (07, {(x3). (A} {15). ().
0 0-3p 0 0-p 0 0-5p 0 0p
1 1-3p i = 1 1-5p k3 Lo
2 2-3p 5 E 2 2-5p i B 2
3 3-3p 1 L-p 3 3-5p 3 I
2\
- - — = 4 5 | Nt s
N
— — — — ] 5-5p £ 1 -4

For purposes of general discussion, it is now customarj@fb\o'speak of the independent variable
of a frequency distribution as a variate. Hitherto, we,h}\re consistently reserved the symbol y
for frequencies, and have variously labelled the single)variate of a frequency distribution as ,
X, upand U,. We now have to deal with two variatés ; and it will be convenient to use 4 and
B for variates respectively referable to samples.of @ and b items. Hence the range of raw 4
scores is from o to 4, and that of B from ofodb. If we now retain v for the frequency of the
sampling distribution of a difference, weshall need respectively symbols o and @ for the fre-
quencies of the two variates 4 and B to~the frequency of whose difference {(D==A4 — Bjin this
context y itself refers. We shall denote the mean of the difference distribution by M, In
accordance with defmitions elsewhere {(pp. 102 and 132) we define the means (M, and M,) of
A and B and the variances (K@nd V) of their sampling distributions by

L =8
M“f“z v?cArc ) Mb = Z w;B; . . . . . . . {I)
.,\'\k=o i=v
'.::'o E=wu 1=3
~'~i~\'Vﬂ*={kaﬂf}~Maﬂ; V,,:{Z w;Biz}—Mb? N )]
3 he=p f—p
By definition '
k=a =5
2u=1; 3= S )
Am=a f=a

The distribution of the difference extends over the whole chesshoard of ‘Table 3 in two dimen-

sions ; and the de?:ermjnation of the weighted means thus involves a double summation which
we may perform either by first adding up all the elements in 2 row and then adding up all the

row totals or by first adding up all the items in a column and then adding up all the column
totals. We write this in the form

i=b k=g l=p%

EF=a
M, =~ Z Vir Dy = ka.wl(Ak—Bs) . : . (iv)

kg =g
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TABLE 3
Difference Distribution w.r.t. Independent Variates
Variate A, e . A, e e Ag Total
Frequency Ty e LM e Ug Jrequency
| i
D, =1(4, — B} . . Dy, = (4 — B.) . . iDL =14, — B)
B, Tz, @y
Ypo = T . By . . Yeo — Tpo Iy . . Voo = Ta - Wy
(Dul = A, — By (DH = (Ak — By Dy = (4, — By
Bl owh . . 4 wh
Yor = Ty - B Frr = g Wy Yar = Gaxwt
O\
NS
Doy = (A, — By) Dy = (4 — By) D = (da — By}
Bg Wy . . . . ‘& ‘: Wy
Yopr = Ty - Ty Vo = T » Wy o\\ Yay = Vg - Uy
Total Frequency 2 2 ) o
[] & \\; @

¢
. . . ). e
A similar operation comes into a large number of sfafistical problems and it is important to
visualize cach step. If we first sum the items of 2 ®qw, we may set out the preliminary addition
for the /th row as follows : " ,

Ny
ol

{%; Doy 3y Dy +vu - Doy v - !_.X)EI-:.DL‘I v +3’a1DaE} =
‘M:\
f?}awz(flu — B) + w4, —B) + Y{{sz(ﬂz —B)...+tow(d4,—B)...+ v (4, — B;)}

(Y k==
’,'\:3“'—' z ﬂk'wI(AE_Bl)‘
x,\’ 7 k=0
We may thus write the @}BW weighted total difference as
O

\ k=a k=4
AN z v, . w A, — z v, . w, B,
mm\./ E=0 k=0
Within the /th toév B, and =, remain constant, so that this expression 1s equivalent to
k=g k=a
Wy z v A, — wB, z Y-
k=o k=o

By (i) and (iii) above this is : w, . M, — w, B,
We now have to add all these row totals from the oth to the dth row inclusive to get the

final result, Le.

1=b P=tb I=b
M, = 3 (w,M, — w,B) ~= 12 w,M, — ;z w,B,.
i=1s =0 =0
Since M, is a constant terin
P=t 1=b
M,=MSw—wB=M-M . . . . )

=0 i
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Fic. 46. SUM OR DIFFERENCE OF TWO INDEPENDENT VARIATES

k=al=27
2 Xumd e By=a, 4 M,
A=01=0
FLEQUENCY 4, 01 vy 1,
= - TUTAL
Fagguency | Varmte Ay P Ay A,
I3 il 2a
Wy By wtpldy + Byl oafd, £ B L wovpldy £ By . toytgl A, -+ M ey 3: vpd g oy ): e
Eoon ) Loon
N\ g My by Be
—_— ——— SR, M
k@ \~> Boow
oy By witgld, + By} wan(dy £ B[ .. wifd, + B, eyt (A, b By 1wy E\"k"[k e J5y _Z' &
'.,:"-:{] L)
, 3 M, ke By
- — — _ . AN
i - - > =
- - : : : .\‘\ & . _
— A\ _ .
N N * 3 -
o 5 ten :' N3 E=u &o-a
1 i wingldy 4 i) watldy AL B L w;‘vx[A’k & By} | wvatd, o+ By ) ‘)_'_‘ vy = owy iy E M
N ? E=0 Easd)
,,,< =M, + r&'iﬁ';_
— _ __ S D -
— — _ — \\‘ - — —
- — — _ N - — _
- — - P4 - _ —
e T - - -
— — 7'\W - - _— —
R B - - -
Q - -
" E N\ k= a h=a
] oA, + B -
"'\ i oo £ By) Lupoyd, 3 5, |. . . Wyl 4 By} pvald Byt wy 3 ud, £ owh, 3 vy
k=1 h=0
=wy M, =By
=4 i=»
= P=ph ! =
| =b
ey 3wy vy 3w tr A
1=o xé:o i * k;ng‘ vata 2 ey i=b 1=
= 1= A
b=k l=b . =5 2 Mg 2wy & J iy = My = ¥,
tu 3 owE " ’ . = P=0 L0
12 e X ws, +u ) o Evg N ol
=} I=0 =y
= i=0
TOTAL | =0pdq 4w, |wo,d. 5 521 k-a k—a
A 2] =Vpdy v M, tadg ko Myl = oA, 4 M, Ny = M, 4 M,
;& k=0 k=0
I
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Tia. 47. THE SQUARE OF THE SUM OR DIFFERENCE OF TWO INDEPENDENT VARIATES
b= l="h
2 2 wy{dy & BR
E=01=10
5 i
Fraguracy Ty { - g Ty
- TOTAL
JFREQUENGY Varale Ay Ay 4,
h=a k=a
iy E vpdp & 2By Z wpdy
Wy By tgldg = Bel® upaegidy £ By)? vapld g £ Byl® =0 k=ko
. =&
= A S 4 Zugn = vargd § £ Rugwmgd By = gl 4+ Bogud By bangBy 3 0
+ vy Bl + vgw By + vy B =
N = el o e B M, + By
- - - - - - - A .
— — - - - - —_ 4 \"\ —
—_ —_ — _— — — 2N .
_ — _ _ _ _ -\ —_
- |z - - - - Q& -
- _ _ ~ _ _ (V_ ~
— AN\ hma k=g
.‘;.\ _ w:kaA}‘,;{—_ZwlB:kaAk
"y £y tgun{dg £ By)F " vptog(dy £ By '4 \ vatryld g = Byt k=0 k=}?=a
. . 2
= vgipd B o Ungedg By = v A} + 2o d By \, = wgnpd & & 2u,wpd By o 4w B 3y
4+ vgur BY -!-ng + gty =
; R v = ey Vold] & BmyB My + weBy
i - 1. O = z = -
_ _ - \\ ) — . - _
- — — M — — - —
9N T E=u k=g
N\& . wy Yo s b 2By 2y
6 By vory(4p £ B % vpry(dy £ Byl vary(dy & Byl k=0 k=k0_ e
=g, Af + 23‘9%"’03& = vy A o 20pmyd oDy = wgmpd ] 2ugtrada By + By 3y
N\ B3 + vty § oo, BT =
RS BN ap 2
\ b =y, Vol } o Zeay By My + vy By
— - l=b I=b
Vold) 3wy + 28, 3 wiE)
i=0 =0
i=b
+ Ew;Bf
= Vld) & 2M M, + V()
i=b =k . k=a k=a
t=3% i=b i=b . - 3 LR A
Qa4 B Ty '—IbZ”kk
w8 2‘ my ok Prgd, 2 L : wpd2 3wy 2y E w2y .,A;.zgom: + Zvgd, Iéo 1B 2__, i
i=0 I=¢ ; = i kg‘a
i= ~ - 2 .
wy B 4 Volfl) Ty
+ UoZ{le? + vy ZW:B? +"'01210 i PamiPy
i=10 = - ;
i=0 _, 4 A o VB — Fyld) = 2MyA, 4 Vo(B)
TOTAL | = ugd? & 2ogdoMy + 0FolB) = vy & 2oy + vpVel®) =g ] £ g My 4 caF il ’ Fra oo
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So far we have used M, for the mean difference of two scores, 4 and B, without reference to the
nature of the score. ' We shall now indicate the particular type of score difference by parenthesis,
e.g. for the mean raw score differences

M(x) = M(x) — My(x).
If the two samples come from the same universe M, (x), the mean of a-fold samples, is ap ; and
M, (x), the mean of b-fold samples, is bp ; so that

Mxy={a—-btp . . : : . . {vi)
which is zero only when the samples are equal (@ = b). Similarly, we have
MX) = 0 = M(X),

S MA(X) = ~ - (i}

The mean proportionate score of samples of any size from the same universeMs p, so that
.'\“\
Mu,) =0= M U,) . o . . (wiii)

Thus the mean difference w.r.t. either the score deviation or the proportlonate score in samples
of uncqual size is in either case zero. One of the parameters of a full Kypothesis relevant to the
recognition of a real difference is therefore unigue, if we frame\t in terms of the distribution
between raw score deviations or proportionate scores.
K7
405 ScoRE DIFFERENCE SAMPLING,”D‘I.STRIBUTION FOR SMALL
UNEQUAL SAuMPLES

For the reason stated in the concludmg sentence of 4.04, we shall confine our examination
of score difference distributions for pairs of: samples of which the members do nof contain the
same number of items to differences between score deviations and between proportionate scoves.

By (vii) and (viii) of 4.04 the mean didference is then zero.
X &L ABLE 4
Score Devigtion Differences for Pmrs of 3-fold and 5-fold Samples with corresponding Frequancies (p — 4+ = o)

SAMPLE A (3 dtems)

Deviation (X%;" 15 — 05 0.5 1.5
{*1 ey (Y) g 3pg® Ipq »*
N
N2 q° ! 2 3 :
\/ ¢ 3pq" 3p% »g°
— 15 Shod 0 1 2 3 |
P4 Spg 15p240 15%g" apty :
SamrLE B 0
(5 ftems) — 03 10p2g° - 0 1 2
10p%® 30p7g° 30pigt 10p%g°
05 ]_0133&.2 —2 — 1 1] 1
10pg® 30ptgt 30ptyt 10p8g?
15 spy —3 —2 -1 0
apaq!l ISPaQS ISPBQE sp'.fq
25 Ps — 4 — 3 -2 — 1
o R 3p7g P
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HEART SCORE ODEVIAT!ION DIFFERENCES - PAIRS OF 4-FOLD AND B-FOLD SAMPLES
(peifa; g= )

-1 o ) 2 3
< * ?® o9 99
af 4 ¥ u; & 17 ol 44 % vaf

N SCI mf, g'“ g‘gm" ’sg{?}’ 940& 9’? 8Q&§i§ 9

B ¢ o 4; %‘ 8 u:: " azf?;fmf 43 (2] ggg‘ , 6?2*?0§

° ) 28%1 (3/45 it o covos ug@’@’ p A4

+} @ L SCANED) g ;;;"2.;’ 234%(%)’ mo;f w L ;:g}w 5?5%5

5

+2 701 (e} Ay . - .
KA 5'2(% (S?f 23? oy 420?2’&_@( Mmoo ?0%@4)‘

+32 56(%}5@@" Fa AN s G‘)u,%)!
809 QR4 W o’ sadifodt T

" wewe =] oguo | O SR | e |l
* geeey °*|00p000| OOURRY OUFE | S | ue

Y _'—"\II("'\

pooee 0009000 OQERO| OORRY | OGRS | Y@

Tra. 48.  Chessboard diagram for Heart-score{DeViation Differences w.r.t. samples of 4 and 8 taken from a full pack,
,{“subject to replacement.

&

“Table 4 shaws the chessbpdrd set-up for the score-deviation difference distribution w.r.t,
paits of 3-fold and 5-fold €asiiples. When p = = g, the frequencies of the differences tally
exactly with successivetetms of the binomial (F + §)°*°, as we see by collecting coefficients in
cells with the same d\\ﬁefence value :

S Score Deviation

AN P v
o ) "Difference D(X) requency ( ¥y

) —4 = 16
N\ —3 (5 +3pt= 8¢
-z (10 4 15 4 3)(§)®* = 28(3)°

_1 (10 + 30 + 15 + D{H® = 56(1)°

0 (3 ¥ 30 + 30 4 5)(§)* = TUH°

1 (10 + 30 + 15 £+ 1)}$)® = 56(H)°

2 (10 + 15 + 3)(#)®* = 28(3)°

3 G +3E= 8"

4 = 1(3)°

For the set-up of Fig. 48 which refers to heart-score deviation differences w.r.t. 4-fold and
8-fold samples, p {= 1) and ¢ (= }) are unequal ; and the distribution is not a true binomial ;
but a table of ccefficients (as below) shows that the corresponding difference distribution for
the colour (red-black) score deviation difference D(X) would tally exactly with the terms of

G+ PHe = G+ D
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@ p = Eifference b {)3) =t Sum of Coefficients
5 8 1 e 1
4 5 44 B = 12
3 4 6+ 324+ 2R o= BR
2 3 4+ 48 4112 + 56 e 23
1 2 14+ 32 4 188 + 224 H4- 7 = 443
0 1 8 + 112 + 336 4 280 - 56 = 792
— 1 Q 28 4 224 4 420 4 224 -+ 28 .= 974
-2 — 1 56 o 280 4 336 4- 112 4+ 8 — 799
— 3 — 2 70 4+ 224 1168 4+ 32 1 = 495
— 4 —3 56+ 112 + 48 4 4 == 220
-5 —4 284+ 324 6 =\ 66
-6 —5 84+ 4 S 12
-7 —6 1 .\:\z 1

'\

The student should be able to show that the results last stated are{quite general, i.e. the score
deviation difference distribution w.r.t, pairs of a-fold and &-fold Samples is given by successive
te_.rms'of the expansion of (3 + 3)**°, when P=%=g¢ WHQY and g are not equal, the dis-
tribution does not exactly correspond with the terms of the expansion of (g +p)**".
R
TABLE 5.)
Proportionate Score Differences Jor Pairs of 4-fold and B-fold Samples with corresponding Frequencies
SAMPL;,?L:‘:: (4 items)

H, 0 0°250 06-500 0-750 1000
¥ ¢t I\ g 6pg* 4p%g Pt

., 8

o)
0 & Y L\Y 0-250 0500 0-750 1-000
o 4pg™ 6ppre 4p7g s
0125 8pg? P25 0-125 0-373 0-625 0-875
NG 32pg™e 18ptg> 39pig® §p'q’

"\NW _

0-250 zsmi\u‘ — 0250 0 0-250 0-500 0-750
SamMpLz B 28pigto 112p8g 168p%g® 112p5¢7 28ptgs
(8 items) AN '

0375 {"56pays — 0875 — 0-125 0-125 0-375 0-625

W™ . S6p2g 224p4q0 336p°%" 224 ptgs 3675

0500 70ptge — 0.500 — 0-250 9 0-250 0-500

T0pig® 280557 420p5¢8 280p7¢% T0pgt

0-625  5gpoye - 0'56275 — 0375 — 0125 0-125 0-375

56pig 224p58 316p74 224phgt 56p8g

0750 28p8qe 2750 — 0-500 — 0-250 0 0-250

28 112p7¢5 168ptge 112p%g 28p10g
0-875  8prg - 0;375 — 0625 — 0-375 — 0125 0125
8p’¢® 32p°g* 48phg? 32plog 8plig
100 4 — 1-000 — 0750 -~ 0-500 — 0:250 0
paqa 4pnqs splnqs 4P11q Pw
—
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TABLE §
Propartionate Score Differences for Pairs of 3-fold and 5-fold Samples with corresponding Frequencies

SAMPLE A (3 dlems)
Proportionate

Scove ") & Y 1
Frequency q* dpgt 3pta P
—
0 qs 0 x_nls' :_.r. 1
g 3pg’ 3p*q° e
. 5ot ~& = % 1
15 b 7 1: 5 4.4
SasteLe B Spy 15pg* i5pg 15p'q
{5 items} N » s - o N =
18 1Cp*q 10p% 30p2g° 80p'q} A\ 10ptg*
¢\
. 8.2 - % - 145 ilé'\ 1“5
18 10p% 10p2yg° 30ptqt L 30};’%3 10pPg2
12 5 4 - '}'} - 1_75' L £ y — 1_1" 16
Y g Spigt 1554 Cf\ 13ptgt 5p7g
; s —1 — i\ — 3% Y
'y pig 3 3p’q #*
) \ &/

X
Q"

"Tables 5-8 respectively show the distribunigr;:a"for the proportionate score difference w.r.t.
saraples of 4 and 8 and samples of 3 and 5, “Distributions of proportionate score differences

and of differences between proportionate,score deviations are necessarily equivalent in ail cir-
cumstances, as is evident from the equation

,inx
Ua - qb\%(ua "_P) - (ub _P) =, Wy

There is an Interesting diﬁérénce between the distribution of raw score deviation differences
and that of proportionate s:s(n‘é deviation differences, or, what comes to the same thing, differ-
ences between proportiériafe scores. When one sample A consists of a items and another
(larger) sample B cox@ists of b items, the character of the distribution. of proportionate score
differences dependgf on whether

o

V (i) b is an exact multiple of @, as in Table §;
(i) b shares a common factor with a;

(iii) b is prime to 4, as is 5 to 3 in Table 6.

We need consider only the two extreme cases. The student can examine (ii} as an exercise,
The distribution exhibited in Table 5 and Fig. 49 refers to samples of 4and 8. It has 17 terms
like the expansion of (3 + $)*® ; but they do not carrespond to those of the latter when p = g =g,
nor can they exactly correspond with the terms of the expansion of (} + })'%. The proportionate
colour score difference distribution (p = % = ¢) of Fig. 49 is obtainable by summing the co-
efficients of Table 5. 'The total is 4098. To get the actual frequencies of each proportionate
difference, D(u,), it is therefore necessary to divide by that number the figures in the middle

column below :



e CHANCE AND CHOICE BY CARDPACKX AND CHESSBOARD

D} Frequency Dlu,.)
{Negative Range). (% 4098) {Positive Range.)

0-000 646 0-000
— 0125 800 0123
— 0250 480 0-250
— 0375 328 0-375
— 0-300 188 0-500
— 0625 38 0625
w 0750 32 0750
— 0-875 8 0875
— 1-000 1 1-000

Comparison of the above table with a similar table of frequencies of the proportionate score
differences w.r.t. pairs of 3-fold and 5-fold samples reveals a striking difference,, In the fore-
going table w.r.t. samples of 4 and 8, admissible differences increase or decrease by equal steps
on either side of zero and the frequencies of successive values of D(x,) fall off steadily on either
side of a peak value. Neither statement is true when a is prime to &. ¢ “From the entrics of

Table 6, we obtain the following result, when p = } =g¢: A\

D(u.) _ LV D)
Negative Range Frequency < ’)’ositive Range
(in Fifteenths) (in Fifteenths)

—0 0-0078 IR 0

-1 01172 L @

—2 00586 W) 2

—3 0-0195 3

—4 0-1132, 4

-5 00147 5

— 6 ®:0301 6

—7 Je-0586 7

—8 A 00000 8

-9 Q 00391 9

— 10 ne 0-0117 10

- 11 N\ 0-0000 11

—12 \, 0-0195 12

—13 2™ 0-0000 13

PN 06600 y2!

— 15 0-0039 15

N\
This d‘lstnbut.mn is La}distinctly bimodal (Fig. 50), having a trough at the mean value {(zers) ;
(b) oscillatory masmgch as certain frequency values within the range of equally spaced differences
are zero.  The student will find it valuable to make a chessboard similar to that of Table 6 for
pairs o £ b«fold\{r}d 7-fold samples (Fig. 50). He (or she) will then discover that such discon-
tinuities do not disappear, nor does the bimodality of the distribution, the frequency for the mean
d.lfferen?e (zero) being always {gt® 4 po)if q is prime to b, ,
we lThlsf would discourage our hopes of finding a ¢-test for proportionate score differences, if
ost sight of the fact that the usefulness of the normal distribution depends on defining the
app Toszate area of a specified range of the frequency histogram rather than defining the approxi-
;in{iltfl:lva Uel(}f any particular ordinate. No unimodal curve resembling the normal even super-
wcrat y could fulfil the second function for the distribution of proportionate score differences
-I.t. samples which are co-prime ; but such distributions may closely approximate to the

Flirgl?lgiﬁl type, if we group individual values of the difference in equally spaced intervals, as in

N : \ . .
6 it An interesting feature of the co-prime distributions illustrated by the entries of Table
1s that ane and the same value of the diff

erence (d) other than zero oceurs in only a single cell.
%k Oimit on first reading. ( ) ) :
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PROPORTIONATE COLOUR SCORE DIFFERENCES FOR
PAIRS OF 4-FOLD AND 8-FOLD SAMPLES

(p="Y2=29

"\ S
WMOOG-0-ET5 ~0750 ~H025 -0500 ~0I75 T BT D25 G-LOTe0HZE D250 G575 YOT0D 40825 10750 +OA75 HO0O

Fic. 49, The score is the difference between the propertion of red cards in 4-fold and
8-fold samples respectively taken from fu{]g ks with replacement.

S 3
"

f we denote the raw score of the kth colum;i"Ej; % and the raw score of the /th row by /, we
tave by definition SN -

BV bkl
P )

Hde(x 2 ab), xis neccssari]yE\whoie number, since @ and b the total number of items and
% and I the raw scores are_al} integers. We thus derive the Diophantine equation (i.e. equation
admitting solution in wmifigle numbers alone) containing three constants @, b, x and two
variables &, ! for a partictlar value of the difference

s\ ” bk — al = x.

y 0\' ¢
The Diophdnititte solution of this equation defines whether the sample values « and & are con-
sistent with She or more solutions of x. The three rclevant properties of an equation of this
N
form are

(i) it admits of no solution, unless x is either zero or an exact multiple of H, the H.C.F.
of @and b ;

(ii) for the particular case & = 0 it admits of two solutions, viz.: k=0, I=0and & =a,
l=b,

(ii1) possible solutions for the two variables when there is no restriction on the magni-
tudes of & or I are

a b 20, 2b\ 3a 3b
(& ) (k—i-ﬁyl"i‘—g); (k+ﬁ,li—j—{), (k—l-E:l—i—E),etC-
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PROPORTIONATE COLOUR SCORE DIFFERENCE DISTRIBUTION (p-YYe=q SAMPLE NUMBERS CO - PRIME

SAmPLES OF 3 AND 5

M e e W e M s % e A el O e Mg s i Ly e .Q:;,fh{:ﬂf.-. [
\

SAMPLES OF 5§ ang 7

F1c, 50, Proportion Colour Score Diﬂ‘e;‘é:g\e Distribution (p = ¥ = g} Sample Numbers Co-Prime.

7

Above sample&wo\f’s and 5, below samples of 5 and 7.

N\

In Table 10, which lustrates the intermediate case referred to above (a and b heing dif-

ferent multiples of a commin tactor), g = 4 and p — 6, so that H == 2. Tor the particular
alue d = == @)
e d=yo v =38 -3 6k — 4 —8g,

Since H = 2 is an exact divisor of 8§ — %,

this admits of solution, of which by trial and error
one is k = 2, ey’

Hence other solutions with no restriction on % and [ are

4 ' .
(2+§:4, 1+§=4); (2+3§=s, 1+?§=7):

3.4 3.6
(2+~Q~—~:8, 1 +-—2—= 10),etc.

In fact, only the first i admissible, since % cannot exceed 4, nor can / exceed 6. Hence the
only cells in which d—=_8_

24 Will be found as ap entry are (2, 1) and (4, 4). .

When 4 is prime to b, H — ] and only one solution consistent with the restriction & < a is
admissible except when 5 .. 0, since the lowest pair of values other than % and / defined as above
$(k=a,1=8). Since H is always an exact divisor of ¥ when H = 1, the only restriction on
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GROUPED PROPORTIONATE COLOUR SCORE DIFFERENCE DISTRIBUTIONS - CO-PRIME SAMPLES
f-Y2=9q

SAMPLES OF 3 AND 5
GROUPS OF 31

SAMPLES OF 5 AND 7
{GRours OF 5)

K37 ir DD W ol g7 1 R nr aar oo owen BB LR

= & &

Fia. 31. Grouped Proportiona}tg\félour Score Difference Distributions--Co-Prime Samples

\ (p=%t=29
The Score Ditferences of Fig. 50 ate Here grouped in equal intervals, and the Histogram Cantours begin to suggest
A the normal form.

2 &

the existence of Qn'(; solution of the Diophantine equation concerns the limiting value of .. In
Table 5, ab ={ 15,"and we note that x = 7 occurs in cell (2, 1) in accordance with 5k = 3/ = 7.
The equation 5k — 3/ = x = 8 we may write as
5k — 8

=3
Thus [ is fractional for all values of & from 0 to 3 inclusive, and there is no cell with an
entry s5%. On the other hand, 5k — 9 = 311 admits of solution for a positive value 2 in
the range [ < 5, k < 3, viz. k=3, /=2in accordance with the entry for cell (3, 2).%%**

We may sum up the result of our enquiry at this stage as follows :

(i) For paired samples of cqual size (@ = r = b) distributions of the difference of raw
scores, score deviations or proportionate Scores are alike unimodal and symmetrical ;
and correspond to the terms of the binomial (3 + 4)%, when p = { = ¢;
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(i) when a and b, the number of items of which the two samples are respectively composed
are unequal, the raw score difference distribution is not symmetrical ; but the score
deviation difference distribution is necessarily symmetrical when p = }=¢q and is
given by (§ + )%

(iif) proportionate score difference distributions of pairs of samples of unequal size are also
symmetrical when p = } = ¢; but never conform exactly to a truly binomial pattern ;

(iv) when b is prime to 4, the proportionate score difference distribution is always multi-
modal and oscillatory ; but the combined frequencies of equal numbers of adjacent
terms may roughly correspond to successive terms of a binomial expansion.

With these indications, we may proceed with some encouragement to examine the applic-
ability of the binomial distribution to score deviation differences or proportionate score differ-
ences w.r.t. large samples. It will simplify our task if we first explore the meaningof the index
(@ -+ b) in the expansion (» + ¥ty A

406 VARIANCE OF A DIFFERENCE Ny
When p =% = ¢, successive terms of (3 +4)7 give the frquéh’cies (¥} of raw scores
x=(X+1)=0,1,2...rinr-fold samples. Ifris fairly latge} we have seen (pp. 111-114)
that the contour of the corresponding histogram tallies closc{y with the symmetrical curve of

the equation Y @V ep(— X2EQYYy . . . . ()

In this equation ¥V = rpg. When p and g are not_equal, the distribution is skew ; but the
skewness becomes less noticeable as # becomes larger. For very large values of 7 the normal
equation gives a good fit to the distribution of X\if we then give V its appropriate value. Vor
large samples of & and of b items respectively-faken from the same universe, we may thus put

Y. = (200} e X2 = 2V.); Vo = apg.
Yy = @aVaghiep (— Xi = 2V3)5 Vi = bpg

We have seen that the distribution of the score deviation difference D = (X, — X;) corre-
sponds to successive terms ofsthe binomial (§ < 3)***; when p = 1 ==¢. For fairly large
values of (« - b), the curveswhich fits this distribution is given by appropriate specification of
the symbols in (i) above,\vz':é*.’:
N v = (2.7 — Dt~ i
_ =2Vt exp(— Dt =2V . . . . . (i}
In this equation 38"
'S Vs =(a + b)pg = apg + bpq.
When p = 1 = g, we therefore have
Vei=Va+ Vs : : - : ' : (iii)

The reascning which has led us to (i) and (iii) depends on the assumption that p = = ¢
but the derivation of (i) encourages the suspicion that the same relations may hold good when
p and g are notequal. If so, we can sidestep the laborious process of evaluating the significance
of  score df.:\e'lation by the methods of 4.03 and 4.05 by recourse to a c-test for which the appro-
priate ratio 1

Doy~ V{V.+Vy . . . S . (v}

I:t' .Will clear tl‘.ne decks for further action with this end in view, if we first seek a general proof of
(). It requires no elabora’ge analysis to show that (iii) is implicit in the chessboard principle
of equipartition of opportunity, and is therefore applicable to the sampling distribution of the
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difference w.r.t. any two variates which are independent. 'To evaluate (iii) we shall employ the
s}rmbolism of 4.04, and define ¥, in accordance with (iii) in 3.06 as

Vv, = {ki S wyo, (A, — Bl)ﬁ} M ... ®)

k=0 1l=0

More briefly we may write this in conformity with {iii) of 3.06 as

V,=V,— M;/? . . . . . . {vi)
It follows (Fig. 47, p. 165) that
E=a l=}
Vo= z z w2, (4,* — 24,B, + B/%)
E=0i=0
h=a I=% k=a }=5% k=a l=mb
= S wp,dr— 22 2 wud B+ S > we BN
E=0 =0 E=0 i=0 F=01=0 :

We proceed with the double summation of each term in two stages as in\flm, putting first

l1=b k=a i—=5 k=a i=b § Vh=a
Vo—S w3 v, A — 22 wB, 2 ud, + 208 > vy
=0 »=0 =0 k=0 {0 K=
By means of (i) and (ii) in 4.04, this becomes QO
I==b \ k=a
Ve=(V, + M52 w, — QMVM‘,\#{—} V, + M) Y e
= o k=0
By (i1} in 4.04 we therefore derive o\
Vo=V, + M2 =2MM, +V,+ M2
=V, + I{b’.“}f{Ma — M)
Hence from (vi): v,V & ‘17;,'—1— O, — My — M2
Hence fr 7y in 4.04 ~ : .
& Irom (\) mn ,\i Vd —= Va + Vb’ . . . . . . (1x)
By the same method (p. 165) gve can show that the variance ¥, of the sampling distribution of
the sum {4 + B) is also gix{én"by Vo=V, 4V, . ) . . ] . ®

&) . o :
By successive app]i%ﬁbn of the chesshoard device we can likewisc show that the variance of
safion of the sum of three variates (e.g. score sums for samples from three card

the sampling distril§
packs) would bﬁi,’(j'f 4+ V, + V), andin general w.r.t, variates 4, B, C...Z
) V=V, AV, Ve Ve e (xi)

Te use {xi) correctly we have to pay due attention to the nature of the sampling distribution to
which it refers. If we are concerned with the raw score difference or the score-deviation differ-

ence (wide (vil) in 4.04) V, = apg, + bpds . . . . . (ndi)
If we are concerned with the proportionate score distribution :
v, —=Lerfay - L (x])
. a b
When p, = py (xii) becomes V,=(a-+bpg - . . . , . (xiv)

and (xiii) becomes

1 1N\ (atbp
Vd:pq(-é+§):(—-g-—g[ . . . . . (XV)
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The last two equations respectively define the variance of the distribution of a raw score and of
a proportionate score of (¢ + 5) fold samples in accordance w:ith the bl'nomlal la'w,.a:nd we have
seen (4-02) that the integrand of the probability integral which describes the limiting contour
of such a distribution of either sort has the same form with due regard to the definition of V.
If therefore a normal curve is capable of describing a difference distribution, we anticipate the
integrand will assume the form :

| @V bep—(DF =20 . .. (xv)

The result of our preliminary investigation of the colour score deviation difference distribution,
we have found to accord with the expansion of (§ + 1*? Let us consider the heart score
deviation difference distribution (p = }) for 4-card and 8-card samples in the light of the new
clue we have gleaned. In accordance with (xiv) the variance of the score deyiation difference
distribution is

N
N

V,= 08+ 4)(0-25)(0-75) = (1-5)2 R,

scoog = 18, >

The heart score deviation differences themselves increase by, it steps, and the cumulative
frequencies of Table 7 exhibit the total area of a histogram jnelnding at the left-hand extreme
the column referable to the negative maximum heart score\deviation difference (d = —7) of
Fig. 48 and the column referable to the specified value ofrd-at the other extreme. A glance at
Fig. 32 suffices to remind us that the boundary otdiftatés of the corresponding area of the
continuous normal distribution are — co and (4 £83) To make a just comparison between
cumulative vatues of the distribution of Fig. 48.dnd the areas cited in the table of the normal
integral, we therefore have to make a half interval torrection for ¢ as defined on p. 127, Accord-
ingly, we compare with the actual cumuldtive frequency for the specified values of 4 for
the exact distribution exhibited in Fig, 48, the area cited in the table of the normal integral
opposite : (d 4+ }) o4 Since g5 =15, it follows that ¢ =1 when d == 1; and ¢ = 3, when
d = + 4, etc. The student will fifidt helpful to check the figures in Table 7 against those of
Table 2 in the Appendix to Pact\J of Kendall’s invaluable treatise.

¥/
O TABLE 7
.xﬂ‘eart Score Deviation Difference w.r.t. Samples of 4 and 8.
" ':’\ (}'-’ = %l q= 'E)
O
¢ Difference Curmulati J
3 F . ulative Normal Integral up to
@. requency. Frequency. d+1 <~ o4= 1-5.
—7 Q-0000 0-0000 40000
— 8 0-0001 0-0001 0-0601
— 5 0-0014 0:0015 00013
— 4 0-0080 00103 0-009%
— 3 0-0379 0-0484 Q080
— 2 01073 01557 01587
—1 0-2055 03612 (3896
0o 2638 0-62530 {-6204
1 (2201 0-8451 0-8413
2 0-1140 2591 0-9520
3 00349 09940 08901
4 0-0057 0-9997 -9987
5 00004 1-0000 0-9999
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With due regard to the small size of the two samples to which Fig. 48 refers, the corre-
spondeuce exhibited in Table 7 is striking. Even more striking is the correspondence between
appropriate normal and exact values of the frequencies of proportionate colour score differences

TABLE 8a
Proportionate Secore Differences war.t, Samples of 4 and 8
p=t=4q
. ! Cumulative Frequency|  Normal Integral
Score Difference. of Score Diﬁ'enznce. o= 0.3063.

— 1000 0-0002 L 00013 A\
— {-875 0-0022 0-0046
— 0750 G-0100 0138 O\
— 0625 0:0315 00357 L%
— (300 00774 0-0768 N
— 0375 01575 01582,
— (250 0-2747 0-2789
— 0-125 04212 04206

0-000 0-5789 {0*5794
b 00123 0-7254 (7261
+ 0250 (-5246 LN\ 8418
+ 0375 0-9227 D7 oo
L 0-500 ] 0-26R6 NN 0-9643
4+ 0-625 : 09901 N\ 0-9862
-+ 0-7530 0-9979 8 [ 09904
+ 0-875 0-99983 0-9987
+ 1-000 1,080 0:9997 |

e |

w.r.t. pairs of 4-fold and 8-fold satm,plif% of Fig. 49 as shown in Table 84, Here it is neces-
sary to apply (xv) above, i.e. . B\
SO, _ (44808 8
Ke il 32 32"
SO i p = 03062,

In this case the diffe.x'e\.&x:es increase or decrcase by A = + 0125, If 4=+ %(0-125) is the
specified column bdinding the positive limit of the histogram, the boundary ordinate of the
correspondin 'cqfn%inuous distribution will be (0-125)x + 3Ad = (0-125)x -+ 0-0625, and the
appropriate c-valle is

(0-125)x -+ 0-0625
(-3062 ’
Table 8B refers to the condensed histogram in the right half of Fig. 51, which shows the results

of grouping frequencies for discrete values of the proportionate score distribution in the lower
half of Fig. 50. cre again p =% = ¢- The samples respectively consist of 5 and 7 items, so

that we may substitute in (xv)
, {5+ T05E 3
94T 785 T35
oo, = 02928
Columns of the condensed histogram of Fig. 51 refer to groups of 5 score values, so that the
central values increase or decrcase by an interval of one-seventh {0-1429) and the appropriate

Iz
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half interval correction is 0-0714. For the ¢ value corresponding to the xth interval to the
right of the mean, we therefore use
(0-1429)x + (0-0714
0-2028

Scrutiny of Tables 7, 84 and 8B encourages us to start on the last lap ’{)f our course with
confident anticipation of the cnd in view, i.e. a general proof that the d1str1b.utwn of score
deviation differences and proportionate score differences w.r.t. samples of ‘the size CEl.St()IIl&rlly
employed in statistical enquirics are normally distributed with variance defined by (xi1) above.

TABLE 8e A
Grouped Proportionate Scove Differences w.r.t. Samples of 5 and 7
p=12=9 ()
ANE
| « N
|  Central Value of Cupnulative Frequency Normal:]‘rf;ggral
Grouped Scores. of Grouped Scores. a ij‘ZQZS.
A

— 0-8571 0-0031 0-0003

— 07145 00168 .\‘\,‘ -0140

— {5716 0-0534 0-0445

— 0-4287 01242 N 01147

— (0-2858 02404 N 02411

— 0:1429 0-205A 4181
: 0-0000 0-5942° 0-5812

- (-1429 G 7805 07593

+ 0-2858 8757 0-8836

4+ 0-4287 W N0-0465 0-9558

+ 0-3716 & 09831 0-9863

07145 NN 09968 0-9967

4 0:8571 \\ v 0-9997 0-9996

O
(N EXERCISE 4.08
"\‘.

1. Giveihe numé}kél values of the standard deviation of the replacement distribution of both the

score deviation différénce and the proportionate score difference for pairs of 3-fold and 7-fold samples
from a full pack &x.t. :
\&

\ (@) the colour score ;
9) the diamond score ;
{¢) the picture-card score ;
{(d)} the honours-card score.

2. Repeat Ex. 1 w.r.t. samples respectively composed of 4 and & cards.

8. Evaluate the proportionate colour score difference distribution for samples of 7 and 11, assum-
ing replacement.

4. Embody the r?sult of 3 in a unimodal histogram like those of Fig. 51 and test its conformity
to the normal distribution with due regard to the appropriate half-interval correction.

5. 'Test the distributions of Ex. 2 by the method of Tables 7 and 8.
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407 THE Exact DIFFERENCE DISTRIBUTION

Mathematical analysis evokes quite unnecessary alarm and despondency, if the student
approaches it with the wrong idea that a proof is a statcment about the way in which the mathe-
matician arrives at a generalisation. In fact, a proof is nothing of the sort. It sets out the
connertion between a result already surmised to be true for reasons commonly conccaled, and
aften forgotten, with a view to cxhibiting its connection with other known results and hence
with a view to recognition of its legifimate scope and limitations. As the number of mathematical
generalisations increases, the status which a particular result occupies in the entire corpus of
currert knowledge perennially invites reconsideration, and the pathway of discovery becomes
jess and less retraceable in a jungle of more and more rigorous demonstration, If one grasps
this cor:ception of the true nature of a proof, the devious steps which lead to theend result cease
to evoke the discouraging sentiment that one is an unwilling witness of a conjuring trick which
one can never hope to perform. (\) '

It is our standpoint that statistical theory, as concerned with samphing, derives its practical
rationale from the calculus of choice and chance, as first expounded by Pascal ; but the applica-
tion of the calculus of choice and chance to large sampling confropf§us with formidable problems
of computation. Consequently, it is the constant prcoccupa‘t:mh of theoretical statistics to
substitute for exact statements which would involve laboriehs* evaluation approximate formule
to provide sufficiently safe guidance for practical judg;n’e&ls. The rationale of such approxi-

& .

mations js referable to purely mathematical considetations having no necessary connection

with the laws of choice as such ; and it is therefore €33y to lose sight of the nature of the problem
which invokes such operations in a welter of symbols with no direct relation to it. We can
keep our feet on solid ground only if weteonstantly restate the problems in exact terms
as 2 prelude to the derivation of an appro;tihlﬁte solution ; and we can keep curselves alert to
the limitations of such solutions only if’we do so.

Tn this context we shall therefare approach the theme of the concluding sentence of 4.06
by a preliminary generalisation wﬂ\l‘sh' we shall have to discard for practical use, at a [ater stage.
We shall in fact seck an exact statement of the difference distribution in terms of the calculus of
choice only to find that it wolald be useless as an instrument of computation ; but doing so will
give us a clearer insight ipgathe meaning of formula which is a suitable calculating device. To
this end, it will be ncedssary to refine the symbols at our disposal. One and the same difference
D may cccur in se\rsif}h‘“c:ells of a chessboard set-up as those of Figs. 42, 43 and 48. 5o far, we
have added frequelieies referring to such a difference term by term, without seeking for a general
expression (o) for a particular value of the difference D common to several cells. We shall
now denote the frequency term of a cell in the kth column and the Ith row by y(‘k, ). Our
problem is to express y, as the sum of all such terms as refer to one and the same difference D.
In Table 9 the score difference of column 3 row 1is + 2 and its frequency is 12p¢®, but a
difference of 2 also cecurs in cells (2, 0) and (4, 2), the total frequency y, for all scorc differences.
of 4 2 being given by

yo = (2, 0) + 338, D T 3% 2)
— 6pg® + 12p%¢° = 3p°¢-

For the respective values in the cell (&, I) of the two variates A (referable to @ iterms per
sample), and B {referable to & items per sample}, we shall here simply write k and /, their dif-
ference D being (B — I). In accordance with the product rule, the chesshoard exhibits the
result

al i A ' bt .
WD) = g R = k)!qu . W__'_r-)!f’ gt . - . )
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We can simplify the task of handling an expression which involves the two variables k& and { by
using the relation implicit in the definition of the difference, viz. :

l=%k—D.

Hence we can reduce all terms which add up to ¥, for a fixed value D to expressions invelving
only the variate A :

b1 al ok bl
W) = Y F DGt —k T D)

PP ()

To get an exact expression for y, the frequency of the particular value D in (i1) we now have to
decide which expressions of this type collectively add up to ys. A glance at the chesshoard
(Fig. 44) gives us the clue. Cells in which D = 0 and cells with the same posz’ﬁve value of D
go downwards by unit steps diagonally from the column specified by & &30 to the columna
specified by & = a; and cells with the same negative value go dowpwards from % - C to
k=051 D. For the raw score difference distribution of Table 9, \yc}tfierefore have two rules
of summation : a3

(a) for positive values of D and when D =0: )
kma AN
ya= 2 k1.0
b I} X )
(B) for negative values of D : O
B 5 4 D)
o= AV ¥k D).

I'hus the summation for positive yaltes of D terminates at the maximum value of % and
that of negative values starts at the Muihimum value of 2. At first sight, there seems to be no
general rule. To bring the two pﬁ?sas of differences into line, the summation must start and
end at the same & value ; and thighs possible only if we extend the range of summation of y(k, /)
terms from D to O for positiyeSalucs of D and from (b -+ D) to a for negative values of .  We
ask therefore what would €Y entail ?

First suppose D i«s\zla})s’iti\re. Then (k — D) must be negative for all values of % less than
D. Now any tcm}g’s'ﬁsciﬁed by (ii) contains as a factor the reciprocal of (8 — D)l and we
know that the reciprocal of the factorial of a negative integer is zero (Ex. 5, p. 12). This means
that we couI%"i{iclﬁde in our total all values of ¥(k, {) from (0, [} to y(D, I) without making any
difference to the result. So long as D is positive, we can thus write '

h=un

kgny(k,!)zzy(k,l). . . : ) . (i)

E=i

The maximum valu_e of & in any cell for which I} is negative is (b — D). If k is greater than
b+ D, the expression (b — k +- D) will be negative and the reciprocal of (b — k -+ D)! will
therefore joe zero. 'This means that any term of the form defined by (i) will vanish, if & = 4 -|- D.
So there is no reason why we should not extend the summation from & = E+Dytok=ain
conformity with the equation

#e=Lb4-0) r=a

2 yERD= kD . N

k=0 E—10
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TABLE 9
Frequency of a Raw Score Difference of + 2 between pairs of 4-fold and 3-fold Samples

Sampre A {4 items)

Score (k) ] 1 2 3 4
(1) Freguency qt 4pg® 8py? 4p% 't
|_ T - -  —
| 0 1 | 2 I 4
a g ‘ _ - - _ - - ‘ tpigh .- = - - -
| —1 0 ] 1 2 3
i 3pg? ! - o . = 12p%4° —_ -
SamrLE B ‘ T — T N —
(3 items) ‘ _2 1 0 12O 2
2 ] T JE - - -~ R — A & 3 %
0% O\ e
‘ -3 -2 -1 \Yo i
3 Pt | - - - - - - - - - J% M . - - -
l___________._———'h;__;________-———_
For the sum of all values of y(k, {) which add up to y, referable to the particular value D of the
raw score aifference, we can therefore write ,x',\\’

A
k=a all .". 3 b!
I o gk ek L) k=D q—kE+D . .
Ja Eok!( —m e '@;;%D)!(b—k+m1f’ ? ™)

The foregoing remarks apply to the raw fsisbl‘e difference distribution, and hence only to whole
number values of D, Score deviations corresponding to a particular raw score may be frac-
‘.cional, and the corresponding meoftionate score will always be a proper fraction except when
it is zero or numerically equal t6.unity. Consequently, score deviation differences and propor-
tionate score differences intrgduce a new issue. 1t will suffice for our purpose if we consider
the proportionate differeregs (ﬁf) which must be fractional unless & = Qor &+ 1. By definition

"™

& g 1 bk—al Y
\J == - = . . . . . vi
‘J\\" d a b ab (1)
oY 1= bk—abd .. (vi)
\V p

(k\i) . al - b! bh —abd  zb—bh-tabd (v

Aol = g —m e (= ) = bk + abd)lp :

a ) a

This raises an interesting issue, on which etementary books are not commonly explicit. . The
fact that the algebraic definition of a factorial number, i.e. the continued product n(7 — 1)

(n—2)...,is consistent with the value of the Gamma function (6.05) for negative and

positive integers is also consistent with the view that the factorial is a special case of the Gamma

function ; but this leaves open the question : what meaning should we attach to the factorial
of a fraction in the domain of its original specification » It is not inconsistent with the infinite
number of terms in the binomial expansion, alike for a positive or negative fractionat and for an
integral negative whole number index to regard its reciprocal as zero, like that of the factorial
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TABLE 10
Proportionate Scove Difference Distribution for pairs of 4-fold and 6-fold Samples

SayvpLk A (4 items)

Propartivitate
Seore 0 & 12 1 24
Frequency o' ipg’ 6p%g* i 4p’q p*
o o & B i
qlﬂ 4pq9 Gpl!gs 4 :\q'll' pigﬁ
A =2 A LE 24
L& quﬁ a4 EY 113 24 1 a4
21 qus 24-?29,3 Sﬁpaq'l' L4p4g6 6p5q5
N
B 151)3[14 - ﬁ - Eni.' fi % 'é'-?'
(3 15p%* 60pq7 B0piys &0 ':f\q‘i\ 15p%*
. ] ¢\
SaMmPLE B § . P .
! iz 20pg* ; — 3 — V) . '\“n)g_ 3=
{6 items) 20p%" 804" 12095 | )\ 80pg* 27"
.18 10 e D n
ig 15pigt T4 T = s W ET) T :
1 D 15p4g8 80pig® ggpsqa,m}\ 60p7g? 15p3g*
— £ —_ A% p"- g 2, _&
zn b‘PSq EED 24 y ) — 24 EXY
T4 5 0 4
6p®y 24ptq* '\ ?,@743 24psg® 8p%g
o -8 | - AV - — 0
- gt A R 4°q pH

R Y
)
LN

i'{\igg'ative integer. If we were to adopt this' unorthodox definition of the factorial of a fraction

in its lowest terms, all expressions suchias (viii) will vanish unless each of the following factors

is either a positive integer or zero{in—’: 1): '
MNok'— abd  ab — bk + abd

 { 3 *
RN [/ a

It' is therefore instructivp\t&v"i'sua]ise, with the help of Table 10, the conditions which define the
disappearance of termsi'(m*olvmg a value of % which is inconsistent with the particular value 4 of
the cell (&, I). Thig':jzable refers to a distributien w.r.t, which @ = 4 and b = 6. The difference
<+ of; occurs i”n\ tworcells (2, 1) and (4, 4) ; and for this entry abd = 8, so that

A bk~ abd _ 3k — 4
_— = I
a : 2
ab — bk - abd 16 — 3k
= =b—L
a 2
We shall now write out values of [and b — { for terms involving all possible values of % consistent
. +8 .
withd = ——
24
A { b—1
0 —2 8
1 —4 6}
2 1 s
3 23 34
4 4 2



THE RECOGNITION OF A TAXONOMIC DIFFERENCE 183

It is at once apparent that only two pairs of values of k and ] referable to the cells (2, 1) and (4, 4}
respectively satis{y the condition that neither & nor (b — I) is negative or fractional. If we
therefore make the unorthodox assumption that reciprocals of [ and of (b — D! are zero if cither
Tor (b —1I)s fractional, as is true if either is negative, we get the right result for the total fre-

quency of a dilference d= o by the appropriate substifution in the expression comparable to

(v} above, ois.

o iea al o ek 8 bh—abd b bhtabd .,
e .’a%u ki (a -- k) e (Ei__abif) (ab — bk T “M)i et )

1

a a

To carry out the last summation in accordance with the procedure which is valid for (v} we
have in efect to employ an ad koc definition of the factorial of 2 fractional number inconsistent
with the accepted interpretation of factorial as values of the Gamma functior. In any case,
both (ix} and (v) are unsuitable for computation w.r.t. large samples. Happily, dilemmas of
this sort do not trouble the pure mathematician content to operate within the domain of the
contimium ; but they are no less challenging, because we can sidestep them by so doing. To
say this signifies that we should at all times submit resuls established in the rarefied atmosphere
of the infinite to the arbitrament of arithmetical investigation; when the method of proof offers
no certain indication of the order of approximation involvedun the outcome wis-a-vis the finite
samples of practical statistics. It is on this understanding-that we now proceed to exhibit the
difference distribution of two normally distributed (proportionate SCores of samples from the

same universe, To do so, we must take cognisangg Gf our findings at the end of 4.02,

*

408 'Tueg DIFFERENCE DISTR:BUTio'N IN A HYPOTHETICAL CONTINUUM

The issue raised by the derivation of (i) in 4.02 is one which we shall need to consider i
Vol. IT, where the fiction of pmbabqg?.&ensity will call for treatment at length. Here it is suffi-
cient to draw attention to a distinction which does not emerge in. the derivation of the pormal
equation as the limit of the bigonial frequency distribution of the raw score (x) or the raw score
deviation (X), and is irrele 131;\ %o the derivation of the normal equation. of a raw score difference
of of  taw score deviatiomdifference. In deriving (3.03) the pormal equation of thf: raw score or
raw score deviation as/aihapproximate description of the statistical properties of a binomial histo-
gram, OUT COTICETN. is'to determine the total frequency of a certain range of discrete sCore values in
accordance withour definition of frequency, i e. that the sum of all possible score frequencies
(yg or ¥,) is upity, ie. = x_n

S op=1= 2
] X=—1p
In this context, both the raw score and thé raw scoreé deviation

ie. Ax == 1 = AX, so that ; 7 )
Zym.Ax-—:lz'ZYm./_\.X . . . . . (i)
0 oy

P

increase by unit steps,

Subject to this condition, the area of the histogram is unity, and we may write :
t r+w
S V. =1 ::j Y,.dX
—rp -0
] CE R
S szg Y,.dX.

S~ -
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In the above Y, the approximate value of the ordinate of the score (x — M) = X is its .
exact frequency. As the integrand of the probability integral, we actually employ an approxi-
mation Y o~ ¥, such that the value of the complete integral is exactly unity. When (i) holds
good, Y, is therefore approximately equal to the integrand of the intcgral cefinitive of the
expectation that a score value will lie within a certain range, i.e. the cumulative score fre-
quencies within that range ; but the derivation of (xi} in 4.02 shows that such correspondence
between the integrand and the function definitive of the frequency does not always hold good.
If we introduce a new symbol F(U) for the integrand of the probability integral of the pro-
portionate score deviation U, we may write as follows the result established at the end of 4.02:

Ve — b oy =
VI, e, ~\
1 — \
F =, e~y Y. ¢ \A
() V2V, exp 2V, v Y A\

Ny

The meaning of this scalar discrepancy is not far to seek, if we return té the histo gram definitive
of the exact distribution. The proportionate score and the propoktionate score deviation inercase
by increments equivalent to 71, i.e. \4

1 \
AU =2 0N
7L C
I\
R N )

R

Thus we can express the frequency of obtgifﬁrié the exact value U as
Yo=r V. AU~ FU).AU. . . . . . 1)

For the cumulative frequency o‘fﬁ}values of U in the range U = o to a, when r is large, we
may therefore write : \J

NG U =2

O\ 4+ }
7.\ z T-Yu-AUﬁI' Fdu | . . . . (¥)
O\Y U=o —%
O at} ' .
R E(< a)ﬁj rF{nav . ; . . . {vi}
'.\:. o

.0
A\ ¥

. \/ L
To obtain theippropriate integrand F(U)in the above we merely write
FINAU =~ Y, N 1)
The reader will note that the infinitesimal product F(U). dU definitive of the limiting contour

of the binomial distribution of the proportionate score deviation has the same form as the corre-
sponding product F(X) . dX w.r.t. raw scorc deviations, i.e.

F(U).dU = \/_IF cexp — (U2 = 2F,)

T 4

1
FX). dX = — . oxp (X2 o o)
(X) Vo exp — (X2 2V
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This product, of which the first factor is the so-calied probability density, is therefore what all

normal distributions, or other distributions of a particular specification, have in common irre-
spective of the scale of the score system.

If the width of each column of the histogram which describes a discrete function y, is
Ax = 1, the horizontal boundaries of the element of area y,Ax are respectively (x — $Ax) and
(x + A} With due regard to the fact that there is then only one value of x, namely the
integer within the interval so defined, we may express this by saying that ¥, is the expectation
that the values of the x-score lie in the range x + 3Ax. If we further subdivide the interval
Ay on our horizontal scale into % equal parts of width Au with % corresponding columns of ap-
proximate height F(u) to accommodate discrete values with a fractional increment like that of
the proportionate score, the element of area F(u)Au = ¥, NOW approximately defines the expec-
tation that the score % will be in the range # =+ 1Au. Evidently, we can make Ax as small as
we like, and can then employ the operations of the integral calculus to make change of scale
explicit without going back to first principles. <\

Tlaving taken cognisance of this convenience, we may now proceed fo)éxamine the distribu-
tion of the difference (d) of two proportionate scores U, and U, respectively referable to samples
of @ and b itcms from the same universe. By definition d = (U, \r— {,), so that U, = (d 4+ U)-
Since we are concerned with proportienate scores, the variance€ (¥, and V) of the parent dis-
tributions and the variance (V) of the difference distributi\og have the values :

RZe M
V,=pg+a; Ve=00~ I{;~‘}<’}z V,4+ Vs

When both a and b are large, we then define the probabilities of obtaining particular score values

7, and T, from one or other sample in accordange with (xvi) of 4.02 and of the scalar convention

specified above, vz, \
X 2

2 Q. . Ur.a
Vo z%—_: . exp —5 AT,
\\'VZ'?TVG '-'Va
¢ and
\ 1 — e
y \'“' Ve == ;/E]T/"; . e —'ﬁ;"b . AUb . . . 0 (V'ul)

N
Let us first suppose :th;t our concern with the b-fold sample is only with samples whose propor-
tionate score is the particular value Us. In other words, we are concerned only with d-scores
which we ma*}f Witte in the form U, — C, that is to say, d-scores which increase by an increment
Ad = AU,. When the value of the a-fold sample score lies in the range U, 4+ 3AU,., the value
of d = (U, — Uy) therefore lies in the range d - IAd. The expectation (¥.) that U, will lie
within the range U, - AU, is then the cxpectation that d will lie within the corresponding range

d -1- 1Ad if the b-fold sample score has the particular value U,. We may write this in the form

LIl Cha s

Yo = oV o7,

The joint expectation that d will lie in this range, when the &-fold sample score has the fixed
vatue Uy i§ Yap = Vo - ¥ Whence by (viii} above
i 1[(0’ + U,)? sz] '
a o~ EXP — 5~ -—— —_ Ad . AU . . . i
Yoo = 5 VA P 7. + v, 5 _ {ix)
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Sinee our end in view is to define the expectation of the d-score, it is convenient to change this
expression as follows :

@+ U Uyt Vol = 2Vs . Usd + (Ve £ VU2

V. v, V,.V,
V, {Vb L 2V }
= =" . . Ud U2
Va.Vb_Vdd—i_Vd @t
vy ['Vb , Vi } {Vﬁ L2 }7
e LR U.d - U,®
V..V, {Vdd fod - 70 L 7 + U _|
Vd—' Vb 2 Vd [ - Vb :lg
= o4+ — . d ,
V.Va d+Va.Vb L"+Vd \
Since (V3 — V) = V., the above reduces to O\
L™
dz 1 Vd { Vb }2 . "', by
ﬁTVaV; Ub+7d-d f( N
Whence (ix) becomes : ,"*.’\\
: 1 g uvdi A ]2
o S CAd . exp — 2N - —d | AU
Yoo o e Py, S eyl TV T

: N\
We now recall that this expression defines the expectatiow'of a d-score value in the range 4 + Ad
when the b-fold sample score has the fixed value Up;.but our end in view is to define the expect-
ation (yg) of obtaining such a valie when we @lléw U, to have any value whatever consistent
with the relation d = (U, — U,) assumed in‘the above, and hence also implicitly allow U, to
have any value consistent with the presumption that the d-score lies in the range specified. We
therefore perform the summation in thé usual way :

1 Lz r —~ V. [ Ve ] 2
o~ ——— Ad ——— —_— . dU
Ya zﬂvVal—(b.f;}? 2V, _mb’xp A U, + V. d »

To simplify the integral wp\ﬂign write

NV — —
N Ve ( v ) Ve
o= _ (U, + 2. d); dz= . dU,.
SRS AL 7 S, 7

\ \ B dz. . o
. yd_é—ﬂ—_:/—ﬁexp _(Z?d-Ad,[_we dz.

\
We have already determined the value of the integral in this expression, viz.

o l+'s) L
j ¥y = 2] e ¥ds = V2
o 0

) 'y~ 1 o — a2
=, e,

In accordance with our assumption that it is permissible to describe the distribution of U, and
U, by continuous functions as specified in (viii), the integrand of the distribution of the score
difference therefore has the normal form anticipated in (xvi) of 4.06 ; but the reader ts entitled
to suspect that we have sidestepped the difficulty raised at the end of 4.07 by introducing such
a postulate. 'The assumption itself is an approximation, and it is gratuitous to assume that true

Ad . . . . . (%)
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statements about truly continuous distributions are approximately true of distributions approxi-
mately described by continuous functions of the same class. Accordingly, we shall return at
2 later stage to the rationale of the ¢c-test for a score difference with due regard to the clue dis-
closed in Fig. 31 ; and we shal there (6.10 below) re-examine the issue by an admittedly approxi-
mate method of fitting a continuous curve o the histogram contour of a distribution definitive

of diserete score values,

409 Ty C-TEST FOR A DiFFERENCE

T'o appreciate the implications of (x) in 4.08, we must now retrace our steps. 'The mull
hypothesis which we have explored in 4.03 and 4.05 is that two samples in which the proportion
of items of a particular class are respectively p, out of a total of  and p, out of a tetal of & do in
fact come from the same universe ; and we set up this null hypothesis to examihe whether the
observed difference d = (p, — p,) Is an occurrence so infrequent as to gndermine our con-
fidence in the assumption that they do. Since statistical text-books in circulation cite for a differ-

ence of this sort two different c-tests of which only one has any inteliigible relation to an ad-
missible null hypothesis, it is important o recall our original inten Qﬂ as stated in 4.03 ; and its

implications w.r.t. the use we make of (x) in 4.08. )

The former implies that there exists a common universe, (e two identical universes) with a
parameter p of which p, and py are sample values ; and ouf/bést estimate (Py,) of p is obtained
by pooling all our material, viz. : \

_ap, 550 0
ab a. 'T" b * - . * ) !

The derivation of {x) in 4.08 also implies, ¢his. Only if it is so, can we make any intelligible
use of the relation. 'The equation defines the distribution of the deviation of a variate from its
mean value which is zero if (and only if).fhe twe variates have the same mean value p (p- 166).
Only if this is so, can d in () of 408 eorrespond numerically with an observed difference ;

and we can then define ¥y as in (¥%) of 4.06

o 1 1\ fatb
i) ()

. \V . .
Since we do not know thelexact value of p, we have to fall back on the best estimate consistent
with the null hypothesis, L.e. pg, 28 defined by (i) above. We therefore write

A0 at+b v
\‘;" Vdspab-gab‘( Py ) . . . . : . @)
If we neglect the half-integral correction of (iv) in 3.05, we therefore base our c-test on the
ratio

4 N i
e L rrors: == SRR
In the example already used in 4.02 we have

Pa = 0-084; gu = 0916;  poy . Gao = 0077 5

pe = 0011; ppy =0122; ps— P == 0-111;

a=279; b =539, (a + b) =818
ab = 150381.
7150881

B = 0111 A e =5
N G077 818)
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Thus the single c-test based on (xvi) of 4.07 is more sensitive than either of the two c-tests
hased on (viii) and (ix) of 4.02 in the sense that it entitles us to reject our null hypothesis
more confidently,

EXERCISE 4.08

In each case formulate your null hypothesis EXPLICITLY

1. Examine the following figures with reference to (@) differential liability of gastric and duodenal
ulcers to perforations ; (5) differential mortality w.r.t. the two types.

(@) ‘ All Cages, Perforated. Decaths, 7N\ '
- Ko N
(Gastric i 1387 174 AR
| s W
Duodenal i 5465 ‘ 363 et
’\'\.

2. Do the following data for comparable periods with referéﬁce to mortality for peptic ulcer in
two classes of hospitals indicate a greater risk of death in oa’c\})t_ the other ?

No. of Ca’sgs ‘ Deaths.
Civilian O '184 ‘ 16
Military L N\ Y |l 9

A

7
s

3. In an investigation on tréa&nents of Impetigo, records were available for new cases and for
relapses. To validate compansé)mbetv. een the assessment of the treatments in terms of mean duration
of stay the distribution of the tw‘o types of cases must be random. Ascertain whether this is so.

A\,J
% N
O~ o s | g
,,,\\ "New cases . | 434 356 ! 54
3 Relapses . . 104 659 : 14
| Total ‘ 338 4235 ‘ 68

4. Examine the following figures with reference to males and females in military service (1933-34).

Cases of Appendicitis. 2 ¢ i

I

With acute imflarnmation . 181 62 ‘
Interval cases . . . 16 13 :
Normal . . 15 20 :
Indefinite or unspemﬁed . 158 203 ‘
"Tatal . . 380 208 |
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5,
(#) with reference to ire

incidence of complications in either

t of Scarlet Fever,
1945-44.

i Vreatmen
Serunt only
Sulphonamides only -
Serurn and Sulphonamides

™o specific treatment

Fxamine the following data to assess wh
atment prescribed by the tw

189

cther there were statistically significant differences
o types of hospitals, and (b) with reference to the
type of hospital or both together

Military Hospitals.

No. with

‘ No. of Patients. Cloraplications.
57 9
33 10

‘ 8 4
86 21

Civilian ITospitals.
No. of Patients. No. ‘.Vlt}-.l
Complications,

125 43

Gl 25

N\

33 14
] AN
308 ~N 87 |

N |

. Make a similar analysis for the following data for the efficacy,

to late complications.

s
N

&P the’ treatments with reference
k W

7

N

_——

|
1948-44.

i Treatment of Scarlet Fever, |_

| Serum only
| Sulphonamides only .

erum and Sulphonamides

No specific treatment

¢
>

| \
' Military Hospitals. /0 Civilian Hospitals.
W -
—_— N N X | — [ —_—————
| « | No. with¥are . No. with late
! No. of Patients. ' Co;]’lplféations, . No. of Patients. Complications.
57 g 5 213 19 5
334 4 61 13
\'\\3’ 0 33 4
() =8 13 308 I‘ 61
3 H

eria

7. Interpret the fo{lg’-%i}gwﬁgures with reference to serum treatment of diphth

mJ
) \
‘_ R _%_;_. - -

‘ Refore end of 2nd day from

N

First gj{agié"of Serum.

After end of 2nd day from onset ‘

|
All Patients.

With any

i
With Polyneuritis, |
|

‘ Complications. |
.. |
| i '-
onset * 81 | 15 5 i
! L]

77 19 13

8. What conclusions with refcrence to prognosis of polyneuritis following diphtheria do the

following figures justify ¢

| :
‘ All Patients. | With Polyneuritis. ,
_ - ‘
With palatal paralysis . ‘ 36 ! 16 |
i Without palatal paralysis 209 | 10 ‘

I
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9. Intcrpfef the following information with reference to knee joints.

! } . With ruptured ‘
All Patients. Cruciate Ligaments. ‘

i
With excessive anteroposterior mobility at knee joint 39 4 :
|
; Knee joint mobility normal . . . . . 463 10 ‘

10. What conclusions can you draw from the following figures with reference to treatment of
soldiers for internal derangement of the knee (1943).

N
Type of Hospital. With Operative Treatment. Without Opc:rhfive Treatment.
e\ L
! A > | .
Medically o | Medically
All Ceses. Downgraded. zf.&.l'l'Caécs. i Downgraded.
+*L N
Civilian .. 77 37 v o3 15
A
Military .. 29 16 \ > 30 8

11, Are the differences within the three seryicE'éategories between syphilitics and a control group
of soldiers in the following table significant ? o\°

| N ! l
\ i Under Service. Discharged. : Untraceable. !
Syphilitics 4™ 554 756 38
Controls , .. 544 745 39
P, i

.12, Bythe samw@s}ﬁbd test the comparability of the two groups with reference to risk of accident,
imnpetigo, and psycl;‘{s(t;it: disorders.

N ) | . ! . . With Psychiatric
\J I . : ‘ ¥

\"\3 ‘ All Cases Accidents. With Impetigo. Breakdowr.
Syphilitics L 1328 49 I 29 : 88
Controls . . ‘ 1328 45 A ‘ TG

1_3. What conclusions do you draw from the following information with reference to soldiers
suffering from syphilis }

‘ '| All Cascs, No., above Median ‘
‘ Syphilitics . | 1492 165
. ‘ 481 205

5‘ Controls




GNITION OF A TAXONOMIC DIFFERENCE g1

14, WWhat conclusions can you draw by a comparison of jaundice incidence among patients respec-

TIHE RECO

tively treated with whole blood from individual donors and pooled plasma ?

! I_;
i | No. of Patients. ‘ Cases of ]a'undicc‘ ‘
- —— - ‘_____ R |
" Whole bicod . . 248 ‘ 2

CPooled . - - ‘ 214 13 ‘

15. Examine the following figures for incidence of jaundice among battle casualtic&:

| Ao
| With "[ransfusion. ‘ Without Transfusioff)i\
: N

|— — - — L 1
. All patients . 757 . 238N, 3
! m'\g.“
| Cases of jaundice . ‘ 33 ‘ )
[ B N
D
A"

18. Examine the following figures with

reference te derum reaction at the end of a six months’

follow up of syphilitics : AN
J S U - vQ‘ M _—_—_.'_._"___,,__—-—
'l [nitial Reaction Treatment. . \\ Reaction after Six Months.
| —
i ’\\"' i Negative, Doubtful. Positive.
. [ - ;: - - _'i_ -
II Short-term Srsesic . 68 2 1 0
I Sero-negative 4‘ :.\‘“.’ ‘
| Penicillin, & &4 4 | 3
| i
i Sho tterm Arsenic . 105 15 3
o [shgR
| Sero-positive 45%
' _ ('Behicillin 87 7 ' 11
| QO |

17. Evaluate the relative efficacy pair by pair of the three treatments of gonortheea shown below.

E— - 1
| e e |
l Penteillin . . ‘ 217 ‘ 14 ‘
‘_ Sulphathiazole . | 358 l 37 ||
|| Sulphapyridine . || 115 | 8 |

| 1
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18. Investigate the following results:

I No. of Cases. Cures,
Penicillin alone . . . . . . . . 251 203
Sulphathiazele alone . . . . . . . 569 321
Sulphathiazole and simultaneous irrigation with KMnQ, . 2014 172
Sulphathiazole and simultaneous irrigation with HgOCN . a5 687
Q"
19. Examine the relative efficacy of different dosages of sulphapyridine for‘cases of gonorrheea
treated therewith as below : ¢\
NS ¢
[— - - \ ~
i < 15 Grams, | 15-20 Grams. | {920 Grams.
No of cases . . g 19NN ) 130
< A - :
Complete cures . 3 25 75 '
" N ;

NS

20. Assess the following data w.r.t. early and’ S surgical treatment of cholecystitis @

P

| AN !
Operation. sNoof Patients. Deaths.
Immediate \\ ) 206 13
Delayed NS . 273 13
b N\Y;
o -
."\".

\’%“
410\ UNBI14SSED ESTIMATE OF THE CRITICAL RATIO

N
A satisfactogtsﬁghre for the critical ratio ¢ presupposes a reliable estimate of the variance
of samples of W given size extracted from the putative parent universe. When an r-fold sample
1s large we may assume that the observed proportionate score p, = (x -+ r) will not often differ
greatly from the truc universe value p.  In so far as this is 0, we may assume that the estimate
of (—— Pogo = 1) will ravely differ materially from the true variance o® (= pg = ¥} of the pro-
porticnate score distribution ; but o, so defined is not the most satisfactory estimate of o.  The
sample statistic ¢ which will give us the most satisfactory estimate is the statistic of which o itsclf

is the mean value for all »-fold samples, and we shall now see that the mean value of o, 15 S0Mme-
what less than o.

To define a statistic s* in accordance with our

definition, we shall write its mean value as
M(s?), so that

My =2 =P )
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The value of the estimate of is
Pode  2(F — )

¥ d

Tts miezn value is therefore given by

My =3 5. LT

7%
e afr — &) rl s
_ng 73 'x](,-_x)[-Pq
EEEC N IR N
L""?-Zx:O(x_l)I(y_x_l)!Pg R
A\

_(?’-—~1)Pg“‘” (?’—2)! 21 :}w_{
o "z" (‘xﬂl)!(r”x—l)!P :‘733?
—?_..__%z r— o m'\'{.
o ,E Apt+9)

(?’ — I)Pq 'x:\’\\':
=T' :\

r—1 -

- M() =

¢? and 02:‘—.’:4?-‘—1%1'(0‘%).

" TR
"y
TN

Thus a statistic §2 which satisfies (i), i.e{*“the condition that its mean value is o2 is:

O
N o . Thoo _ Podo

G —1 r—1
A</

In accordance with (ii) '%éﬁﬁould therefore write the critical ratio for the difference of two
samples respectively c@p’bsed of a and b items as

:.‘\‘::' Pﬂ _Pb

- 1 .1
N\ ,\/ Pab‘?ab(;j - ETl)

(e — P9 e @ —b =) (iif)

The importance of the correction involved in the substitution of {a — 1) for a and (& — 1) for
b in (iif) of 4.09 is open. to question inasmuch as : () it makes very little difference if the pooled
sample is large ; (B) we are cntitled to assume a normal distribution of d == (ps — py) only when
the pooled sample is in fact large.  In any case, we have now at our disposal (vide infra, Chapter 6)
the means of exploring the precise magnitude of the error of judgment involved in using an
estimate of o, or o, based on the observed proportionate score P

13
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411 Two Wayvs oF DETECTING A REaL Divrrnrscn

When called upon to promounce judgment on the efficacy of methods of pophylaxis or
treatment, the yardstick we employ may be, and quite commonly is, an attribiie swhich admits

of a 2-fold split of the items in the universe of choice. Thus a human populution is amenable
to division into those who have had cholera and those whe have not had it, wiid the former are
themselves divisible into those who die of an attack and those who do not.  Sucl, » tlussification
may be merely qualitative in the sense that our criterion of what is 4 and whar i+ not A is all

or none ; but it may be a more or less arbitrary threshold specifiable by reeourse 1o a4 number,

as if we ask what proportions of patients respectively treated ceferis paribus with and without

liver extract for six weeks have an r.b.c. count of over 4 million. So lo ng as we scose the efficacy

of a treatment by the number of individuals in a class, the criterion we adopt Moy Jelimiting the

class itself is immaterial to the mathematical statement of the problem.altom tli: standpoeint
of experimental technique, it may be better to employ a quantitative S in prefurence to a

qualitative Wasserman as a basis for distinguishing patients as serpntefrative and suropositive ;

but a preference for one or the other involves no issue relevant €0 Statistical procsdure if our

yardstick of relative efficacy w.r.t. long-term and short-term agsénotherapy is the preportion of

seropositive patients at the end of a follow-up. &)

The method of detecting a real difference dealt with i this chapter is the only wethod at
our disposal when the difference, like the difference Qiiﬁféen Mendel’s green and yeliow peas,
admits of no quantitative specification in the ordindfy)sense of the term ; and it is the best line
of attack when the effect of a treatment is one we have good reason to associate with a fairly
clear-cut threshold. 'This by no means exhausfs'the criteria of efficacy we may adopt when the
end in view is to assess the biological effect.8f an external agency or even of a particular gene
complex. We expect 2 soporific to exert\an appreciable effect on the hours of sleep of almost
anyone, if undisturbed ; and the apprépriate criterion of its action is some average which takes
tnto account its effect on every individhtal in the group. In distinguishing groups by an average,
our criterion explicitly takes no stek of the number of individuals which belong to one or other
of a system of two or more classes. Nor do we do so, when we distinguish two pure lines of
beans by the mean weightofthe seed or the mean number of seeds per pod.

The detection of a real/difference of the sort last stated will be a subject for treatment in
Chapter 7, where wcgh‘aﬂ have to give more precise definition to the implications of two ways
of scoring a sampleN\NThe type of difference to which analysis hitherto undertaken in these
pages 1s relevaqtjlﬁelongs to the domain of what statistical text-books usually call sampling of
attributes, gm?xpression which suggests a peculiarity referable to what we score. The cssential
thofom}" Yefers to the method of scoring we adopt, Of two methods of scoring samples dis-
tinguished later as taxomomic and representative, the former alone has so far occupled our atten-
tion, The_pro'blem of detecting a difference dealt with in this chapter is how to detect a dif-
ference which involves A taxonomic score, How to detect a difference which we refer to as a

representative score, e.g. a mean or median value, calls for separate investigation of the distribu-
tion laws of averages.



CHAPTER 5

SIGNIFICANCE AND CONFIDENCE

501 Tser Baves BALANCE SHEET

THE issue dealt with in the last chapter drew attention to two classes of statistical problems,
severally distinguishable as problems of verification and problems of estimation. Of recent
years, the implications of this distinction have come sharply into focus ; and the most elementary
treatment of probability would be incomplete without an examination of statistical judgments
wis-d-vis this dichotomy. To undertake such an examination with profit we must'now try to be
more explicit than heretofore about our criteria of credibility and confidence,, Inescapably, we
find ourselves in controversial territory, when we do so; but happily the ‘mdst controversial
issues involve judgments of methodology and semantics rather than of mAthematical technique.
For instance, the weight we attach to introspection as opposed to obs€rvation of the behaviour
of others is highly relevant to the acceptability of arguments put forgard by one school of theo-
reticians in support of their views; and it is not possible to_d¢ full justice to such reasoning
without raising issues about which men of science still emtértain diverse opinions. It is
therefore pertinent to cite an example from one of the pigst”valuable contemporary treatises.
Expounding a view common among mathematiciansssthie author states: “if we adopt the
axiomatic approach in which probability is a measurg of attitudes of mind, it is reasonable to
take prior probabilities to be equal when nothingjs"kﬁown to the contrary, for the mind holds
them in equal doubt ”. Confronted with suchvan assertion, the biologist who is no mathe-
matician is under no obligation to accept it, %\One may regard it as an illustration of the fact
that good mathematics and good biology are consistent with different philosophies of life.

In asking whether the composition efa sample is or is not consistent with a particular hypo-
thesis, we have hitherto been conteft!tt’ seek an answer to the question: would the choice of
such a sample be a rare event, if gh&ypothesis were a correct specification of the conditions of
our choice 7 So long as we.cOntént ourselves with statements of this kind, there is general
agreement among statisticialg“about what procedure we should follow. If we do follow the
prescribed procedure, we/hdve at least disclosed what numerical information at our disposal is
relevant to any verdict-e may legitimately prenounce ; but if we do no more than this, we
leave the act of judgment itself to others. In ourselves assuming the right to pass a verdict
on a particular isgiie, we accept the responsibility of defining a criterion for a wider class of
decisions, viz.%ow to discriminate between the alternatives that: (a) the hypothesis is true
in spite of the rarity of an event whose occasional occurrence is consistent with its requirements ;
(b) the rarity assigned to the event by the hypothesis is such as to make the hypothesis unaccept-
able. Such a distinction presupposes some connexion between : (&) the frequency with which
an event occurs if a given hypothesis is relevant to the situation in which it does occur
(8) the frequency with which an individual can correctly infer that the same hypothesis is
indeed applicablé to such a situation.

To he clear about what judgments we can correctly make on the basis of observation of
population samples, it is thus helpful first to examine 2 situation about which we have all data rele-
vant to both issues and then to explore the consequences of withhelding part of our information.
Accordingly, we shall suppose that 5 per cent. of mothers with litters of 8 in a laboratory colony
of white rats carry a sex-linked lethal gene, 'The theoretical sex ratio (females to males) in such
litters is 2 : 1, 1.e. p the expectation that an offspring of a carrier mother will be maleis }, instead
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of £ when the mother is normal. For simplicity, we shall assume, as is often tiue of rodents,
that there is a high measure of intra-uterine competition fm: sm:vn-‘al an'.l()]lg.f‘('f'tll}&%{:(.l cggs. In
so far as this is so, it is pardonable for the heuristic end in view to su.npht),-' the situation by
neglecting the influence of the lethal gene on the fotal num.ber .Of oﬂs[)r{ng bor.n, aind ‘t.hercfor.e
on the chance that a mother with a given number of offspring is herself a cairicr.  Given this
information, we then have all requisite data to supply an answer to the follov.'ing question :
how often shall I be right in the long run if I deem every mother of 8 to be a carrier because
all her 8 offspring are females ? ' _ -

In approaching this problem we may distinguish two sorts of information : (f‘a‘) fierori 11f0}‘ma“
tion about the background of the situation, viz. that 5 per cent. of mothers of & are carriers ;
(b) the additional information in the foreground of the situation, that the mothers of 8 in ‘Ehe
present context have exclusively female offspring. We also have two hypotheses upon which
we have to pass judgment : O\
Hypothesis 1. The mother is a carrier. O K
Hypothesis 2. 'The mother is normal.( ~\ )

Let us consider the frequency of events relevant to our judgérits about the situation before
discussing the issue explicitly raised in the question above, i.e,\the frequency of corrers judgments
about the situation. Qur prior information about the, barkground situation significs that the
mean numbers of carriers and normal females in samp.@s of 1,000,000 mothers of 8 are respec-
tively 50,000 and 950,000. 'The additional informiation that the mothers under discussion
have female offspring only has different implicatiens depending on whether Aypodhesss 1 or
hypothesis 2is applicable to the situation as a whdle. If the mother of § is a cartier, the theo-
retical frequency of an exclusively female litter is

N

(@) = 00389,
AN\
If she is normal, the theoretical f@uchcy of the event is

RS, ($) = 00039,
AN
In samples of 50,000 litters-of 8 produced by mothers who are carriers, the mean number of
exclusively female littg"s“\iﬁll thus be
O\
N 0-0389 x 50,000 = 1945,
AN

In samples {‘@50,00{} litters of 8 produced by normal mothers, the mean number of exclusively
female litters\ill be

0-0039 x 950,000 = 3705,

We thus arrive at the following balance sheet :

. ]
Mother of Eight, | 4¥ Offspring Female. Some Offspring Male. Total.
- N .
Carrier - 1845 48,055 30,000 :
Normal I 3705 946,295 850,00
i —-—_ _ S
Total . i 5650 994,350 1,000,004
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Among mothers of 8 whose offspring are exclusively females the Jong-run ratio of carriers to
normal rats will thus be 1945 : 3705 ; and the expectation that the mother of such 2 litter will
herself be a carrier 1s

1945 (0-05) x (0-0389)

5650 ~ (0:05) x (0-0389) + (0-95) x (0-0038) e 2

I'his means that we should come fo the right conclusion about 1945 times in 5650, if we regard
the production of an exclusively femalc litter by a mother of 8 as sufficient grounds for deeming
her to be a carrier. In other words, we should be about twice as often wrong as right.  This is the
answer to the question stated above ; and it is an assertion about the expectation that our judg-
ment will be right if we act on the assumption that Zypethesis 1 is applicable to she situation as
a whole. Let us denote this by E(h,). Accordingly, the expectation of a correct judgment on

N

the alternative assumption that Aypothesis 2 is correct will be ¢\

3705 _ (0-95) % (0-0039)
5650 ~ (0-05) x (0-0389) + (0:95) x, (3,0039)

E(h) = . . . (i)

The theoretical frequency of a correct judgment about the bdckground situation is the prior
expectation that 2 mother of 8 will be as specified by which' hypothesis dictates our decision
in the absence of the additional information that restrigts’the range of choice, wiz. that all her
offspring are female. We shall denote by E(p,), the fre gitency of a correct judgment, if we deem
every mother of 8 to be a carrier and by E(ps) thedfrequency of a correct judgment, if we deem
every mother of 8 to be normal. Thus E(p,) =0.95 means that 95 per cent. of my judgments
will be right in the long run, if T assume thatvhypothesis 2 is applicable to the background situa-
tion. The expectation that a mother ofy8 will have exclusively female offspring is the theo-
retical frequency of an event which is indeépendent of one’s ability to make a correct judgment,
but does depend upon the speciﬁcat%dn“of the mather in terms of one or other hypothesis under
discussion. We shali denote it by, E(#,) if the first hypothesis is applicable, and by E(f,) if the
sccond is applicable. In this.eaitiple E(f;) = 0-0389 and E(f;) = 0-0039. What was originally
a balance sheet of informatiof 2bout rats thus becomes a balance sheet of information about the
frequency of correct judgmeits, when we generalise (i) and (ii) by recourse to these symbols, i.e. :

A .

N — E(p) X E(f) .
y .‘\f “\ 3 E(kl) - E(P].) % E(fl) + E(Pz) v E(fz) . . . . ( )
E(hy) E(ps) X E(fy) . . . . )

T E(py) X E(R) + E(ps) X E(f)

This is the form the famous theorem of Bayes takes, when only two hypotheses are admissible.
As applicd to situations which offer a choice between # hypotheses, we may write it in the form :
E(p,) . Ei
By = 2 Bl L LW
ZIE(Pm) - E(f2)
It is customary to speak of E(k,,) as the posterior probability of hypothesis m in contradistinction

to E(p,), its prior probability in the absence of additional information which is 2 necessary
basis for assigning a value to E(f,). The latter we call the Likelihood of the occurrence on the
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assumption that the mth hypothesis is correct. These terms do not make cxplicit the essential
content of the balance sheet of Bayes. We may capture it better by referring to £(k,,) as the
operational walue of the hypothesis, to E(p.,) as its commendability and to E(f, ) as the theoretical
frequency accordingly ascribed to the occurrence itself,

‘Though Bayes' Theorem has been the battleground of a long and vigorous controversy,
the theorem itself is unexceptionable. It is indeed an elaborate tautology. What is
open to exception is not its form or content. The argument is about its usclulness. As it
stands, it answers no question until we can assign a value to the prior probabilitics {p.), 1.e. the
expectation that one or other hypothesis is applicable to the background situation ; and we com-
monly have to make judgments about events without any exact information of this sort. In, any
case, the exactitude of the statement presupposes that the number of hypotheses which might
apply to the situation is specifiable ; and any such assumption invites Bacon’s(¢ommeont that the
operations of nature are more various than the conceptions of man. \

In a scholium of his posthumous work (Phil. Trans. Roy. Soc., 1988) Bayes proffered a
tentative recipe for action by recourse to the axiom that prior probabilities are e¢qua! if we have
no available information to the contrary. In accordance with thisfatnous postulate, we should
have to put E(p,) = } = E(p,) in the foregoing example, if we didnot know what preportion of
fer;xales in our colony were carriers. Let us see where thidGould lead us. We should then
write

ANY;
3(0-0389) (O 389
$(0-0389) + 4(0:0039) ~ 428

E(kl) =

In accordance with Bayes’ postulate we thus drsive at the conclusion that we should be right
about 39 times out of 43 in the long run, if we accepted an exclusively female litter as sufficient
grounds for deeming a mother of 8 to be dearrier. In other words, we should be ten times as
o'ften right as wrong. Actually, as we have seen above, we should be more often wrong than
right; indeed, nearly twice as oftén) Needless to say, the school which adheres to Bayes’
postulatfe would not claim that it;\hse necessarily gives us a correct assessment of the value of
such a judgment in a particular’situation. What they do claim is that we shall make more
correct Judgments than wrénp/ones in the long run, if we apply both Bayes’ theorem and his
axiom consistently to sit@ations in which we lack background information relevant to a precise
judgment. \

.APPIying t}'ert.l.{fRJrem itself to everyday affairs means acting in accordance with the hypo-
thesis which asslgns’ highest posterior probability to an occurrence evoking an act of judgment ;
and 1o do sp"itNis necessary to assign a numerical valye to the prior probabilitics of the hypo-
theses. ~ Applying the axiom signifies that we assume the equality of the latter in the absence of
any knowledge about them. In effect this means that we then adopt the hypothesis which
assigns to the' occurrence the greatest fikelihood in the technical sense defined above. Such a
recipe for dction in the practical affairs of life invites objections of two sorts. One is that it
iappears to imply a model umn of judgments from which we draw with equal frequency in the
t:);lla%cen:fl Ez;ll;fzfzsﬂv:iu:il c;lo 951; c(i;)) not I(l:prrectly specify a given §imation, an_d critics of 1::he tpo;-
imaginatior gruse compelling reasons for undertaking so exacting an exploit of the

A more serious objection directs attention to what useful purpose the balance sheet

of Bayes’ theorem serves as a i i fent
caveat against over-confidence in the absence of sufficien

re i o SEEH )
levant evidence. ‘The limitation mplicit in the postulate itself is an idealisation which

;i f:hgoggerheads with the the01:efn 80 conceived. For it has little relevance to situations
¢h we commonly make decisions about the relative merits of hypotheses. T'o be sure, it
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is not hard to illustrate a precise application of Bayes’ theorem and the implications of the postu-
late by recourse to an urn problem, if the end in view is to provide a text-book with an apposite
example ; but the world’s work commonly confronts us with situations in which the postulate is
inappropriate. The very fact that one takes the trouble to test a hypothesis in real life com-
monly arises because one has good grounds for believing that it is right or for suspecting that it
is wrong. We cannot therefore say that we have o relevant prior knowledge at our disposal.
Though we have no grounds for assigning a mumerical value to the prior probabilities which
make the balance sheet audit, we commonly have good reasons for believing that they are unequal,
and indeed grossly unequal. In such circumstances, we are faking the balance sheet if we
ascribe the rumerical value 0-5 to the prior probabilities of alternate hypotheses. Our rat
colony example emphasises this. If the statement of the problem withheld the relevant informa-
tion that E(p,) = 0-05 = 1 — E(p,), any biologist invited to express a judgmént would start
off with the knowledge that female carriers of sex-linked lethals are happily uncommon in
colonies kept for laboratory use other than research on such genes. \Y

It is indeed important to recognise that we make statistical judgments against a background
of information, only part of which—and often a small part—is susceptible of sufficiently precise
statement for incorporation in a balance sheet of the frequency, 8f ‘Correct verdicts ; and this
fact is highly relevant to a realistic appreciation of what meaningvive may legitimately attach to
the term statistical significance. The pivot of criticism which" Bayes’ postulate has provaked
has been the claim that it can contribute to solution of préBlems invelving inverse probability,
i.e. inferences about a universe of which our knowledgeis confined to samples ; but the theorem
as propounded by its author is truly relevant only o problems involving direct probability, i.e.
decisions about the source of samples which may.come from one or other universe of known
composition. One use it serves is therefore te“bring into focus the limitations inherent in any
numerical criterion of significance ostensibly~eoncerned with the operational value of putatively
admissible hypotheses. &

To appreciate what is salutary jn Bayes’ theorem from this point of view, it is necessary to
remove certain ambiguities custqmary in verbal designations of the expressions it contains,
As a balance sheet, it is easy to illustrate by recourse to a fictitious example, and easy to visualise
as in Figs. 52-53 ; but the veral interpretation of the symbols is either ambiguous or cumber-
some, An cutstanding ambighity in current statements arises from the customary implication
of the terms prior and\g’os’fen'or as applied to applicability of the specified hypotheses. The
prior probability is apz’as§cssment of the frequency with which the hypothesis applies to a general
class of situations~referred to above as the background of the event. The posterior
probability ref¢rate’its applicability to a particular member of such a general class of situations ;
and the additiona! information which it takes into account changes the scope of the hypothesis. In
so far as the scope of a hypothesis is in fact relevant to its specification, the two probabilities do
not literally refer to the same hypothesis. While a succinet verbal formula which resolves this
dilemma is difficult to devise, it is not impossible to find a form of words which conveys the
gist of the matter. ~ What the balance sheet of Bayes discloses is that an exact decision in favour
of one or other alternative hypothesis involves both

(@) An assessment of the frequency (kikelihood) each hypothesis assigns to the observed

event as it stands.

(b) An assessment of the frequency with which they respectively apply to a class of events
sharing every characteristic of the observed one other than the particular numerical specification
which explicitly provides the raw material for a statistical judgment.

An exact decision here signifies an answer to a question of the form: how often shall
I be right if I act on the assumption that such and such a hypothesis is correct ? The dual
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Fia. 52, }J{n Medel of Bayes’ Balance Sheet (with Replacement). We may here choose 2 balls from one of 6
urns containing black_(s_uccess) and red (fuilure) halls - (i} B urns each containing 3 red and 1 black ball(p, = 1) ;
{ii) 2 urns each containing equal numbers of black and red balls (p, = $); (iu) 1 urn containing 1 red and 3

black.balls (#s = ). The expectation of choosing a ball from (i} is %, and this is the expectation E{p;} of
choosing a hall from an urn with a chance of 1

T : in favour of success, 'That of choosing a ball from an urn with
 chance of § In favour of success has an expectation E(p,) = %, and that of choosing a ball from an urn with
a chance Of.% in favour of success has an expectation E(p,) = }. The chessboard shows the likelihood Eifih
ete,, of getting 0, 1 or 2 ; : d.

ti ili . and the staircase model exhibits the
contingent probability of each event with due regard to the prior expectation of choosing the 2 balls from one

class of ums rather than another. The balance sheet at the bottom exhibits the probability E(#,), etc., of
drawing a right conclusion about which class of urns a specified pair of balls may have come from.
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Fie. 53. Urm Model of Bayes® Balance Sheet (without Replacement). The set-up is essentially as for Fig. 52

except in so far as it is necessary to use the staircase mo

del for non-replacement to evaluate the likclihood of

drawing each class of pairs from a particular class of urns.
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requirements of an exact decision in this sense as set forth f'n the balance shcet .Of Bayes are not
peculiar to judgments about inverse probability. Nor did Bayes: set fort.h his theorem with
that end in view. Accordingly, we shall re-examine our criterion of significance wis-d-zis
the class of judgments we pronounce when the end in view is the assessment of an a priori
hypothesis as defined in Chapter 3 before proceeding to explore in greater detail the ulterior
problem of estimation raised in Chapter 4. We shall therefore need to recall the naiure of the
assessment which we designate a test of significance,

Before doing so, we may pause to take stock of a distinction between two uses of numbers
which enter into the complete balance sheet. We started our enquiry by discussing only the
frequency of events : (a) how often rat mothers of 8 in our model colony are normal or other-
wise ; (&) how often rat mothers of one sort or the other have exclusively female offspring.  We
end it by allocating the frequency of the truth of a proposition identifying a pdrticular mother of
8 exclusively female offspring as a2 mother of one sort or the other, The twe classes of frequency
which enter into our balance sheet call attention to a dichotomy in ,g‘(}htémporary statistical
thought. One school prefers to identify the concept of probability ‘exclusively with the fre-
quency of external events. Another identifies it exclusively with“the frequency of correct
judgments about them. Between the two extremes a more e¢léctic view is admissible, o7z, :
(2) frequencies ascribed to events by particular hypotheses d6_hot provide a sufficient basis for
assessing the frequency of applying the latter correctly ; (b)walid judgments about the frequency
of applying hypotheses correctly have to rely on infoomation derived from observations about
the frequency of events which invoke their use. A

Orne property of (v) deserves further commeng before we take leave of Bayes’ thecorem. If
each of m hypotheses has equal prior probabilitytweé may write E(p,,) = 1/m, so that

B, - P& E(h,) E(f,).
XE(f)

This is tantamount to saying that\t}w hypothesis which has highest posterior probability is the
one which assigns highest likelihdod to the occurrence. If we take as our criterion of the opera-
tional value of a hypothesig\he condition that jt assigns maximum likelihood to the cvent, we
are therefore bringing jn/Bayes’ postulate by the back door. It is pertinent to asscrt this
explicitly, because some.épponents of Bayes® postulate have espoused the principle last stated ;
ang:l protagonists of 'the axiom have raised the objection that Bayes’ postulate is implicit in the
pnr‘lmp]e. Thc:)sg who propose the method of maximum likelihood as an escape from the dilemma
which the pestuldte sidesteps assert that the application of Bayes’ axiom does not always lead to
the same residts as the method of maximum likelihood itself ; but the examples adduced by
them refer to continuous distributians, It seems to the writer that we should regard the issue
at stake as semantic rather than mathematical. The assumption of continuity is a useful fiction
for construction of convenient formulz for computations of sufficient precision for practical
purposes ; but we may well ask whether an assumption of this sort is relevant to the logic of
samplmg of atFr.lbutes as such. At least in this domain we are concerned only with enumeration
of discrete entities. .If assumption. of continuity leads to paradox, may it not therefore be so
because the assumption is essentially, albeit conveniently, paradoxical ?
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EXERCISE 501

1. I toss a penny ten times in succession. It always turns up a head. If one penny in every
million coined has two heads, what is the chance that my penny has two heads ?

9. A purse contains ten coins, each of which is either a Borin or a half-crown ; a coin is drawn
and found to be a half-crown, what is the chance that this is the only half-crown ?

3. A purse contains ten coins, which are either pennies or florins. If a single coin drawn from
the purse is a penny, what is the chance that it is the only one ?

4. A year which contained 53 Sundays was not the last year of a century. What are the odds
against the truth of the surmise that it was a leap year ?

5. A, B, C entered for a race, and their respective chances of winning were gétimated at <%, 17,
5. Circumstances which come to our knowledge raise the chance of A’s success, t© 1. Whatarethen
the prospects of B and C'? (\H

N\

6. The dealer removes one of a pack of 52 cards. From the rexpaipﬁer of the pack a player
draws 2 which are both spades. Assess the chance that the missing card\ is'also a spade.

'*\ \ . -
7. Jones tells the truth three times out of four, Smith fourfimes out of five; and they agree in
asserting that a ball drawn from a bag containing nine balls, e<cj; of a different colour, is red. Show
that the probability of the truth of their assertion is §7. )"

S

8. Snooks makes a true report four times out of ﬁ.v‘e, AWright three times out of five, and Johnson
five times out of seven. If Wright and Johnson bothyepert that an experiment failed and Snook reports
the reverse, what is the chance that the experiment $ticceeded ?

L
SN g

5.02 '(fm CriticaL Rario

+ )

When a sampling distribution_is\normal, we can cite the long-run frequency of an event,
i.e. its Jikelthood in the sense{defined abave, in conformity with 2 particular hypothesis, by -
recourse to what we have hithétto called the ¢-ratio. For each numerical value (&) of this critical
ratio, the probability integral assigns the fraction of the total area under the normal curve
of unit variance (and Mnit area) enclosed between the mean ordinate and the positive
ordinate (to the right)'corresponding thereto. We are at liberty to make use of this infor-
mation in two ways. To distinguish between them, it will suffice to cite a small-scale type
of problem amenable to direct application of the binomial distribution. Let us suppose that
a mother of ‘teh has nine girls. Our concern may be to state how often a normal (1:1) sex
ratio prescribes that the number of boys or girls in a fraternity of ten will exceed or fall short
of the expected mean value 5 by as much as 4. In conformity with the symbolism of 3.01, we
shall here denote this by E(>|4/). Alternatively, and more especially if we entertain good
reason for suspecting that the genetical constitution of the mother prescribes a sex ratio of 2: 1,
our concern may be to state in conformity with the same assumption : how often the number of
girls will be as great as nine. We here denote this as E( 2> + 4), if the score specifies the actual
number of girls in the family or by E(< — 4) if the score specifies the number of boys,

Hitherto we have taken no cognisance of the second type of question, which receives scant
attention in many statistical treatises ; but the distinction is not trivial from a logical viewpoint.
Since we shall Teturn to it at a later stage, it will be convenient to forestall repeated periphrases
by recourse to appropriate verbal labels. We shall therefore speak of : (a) a specification of the
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first type which we denote E{ > | X |) as the modular likelihood ; (6) the alternative specification
which we denote by E{ > + X) or E(< — X)) as the vector likelihood of the event in conformity
with the selected hypothesis, e.g. a normal sex-ratio in the preceding illustration. When the
numbers involved justify recourse to the use of the normal distribution function we proceed to
evaluate them as follows :

(i) Modular likelihood. 'The area of the normal curve between 0 and % defines half the
value of the expectation that a deviation corresponding to # = X =-o, will fall inside the range
(X +a,). If we denote it by 4(0, - A). :

E(|X|>he)=1-—240, + i)

Modern tables (e.g. Table 2, p. 439, Vol. 1, 1st edition of Kendall’s Advanced Theory of Statistics)
usually cite for different values of the critical ratio the numerical value of the total area under the
normal curve from — «© up to + k. If we write this as A(— o0, + &) =054 40, + 4},
E|X|2h)=2—24(— o, +B) " . . ()
(i} Vector likelihood. We are free to choose which of two exclusive classes such as boys
and girls we specify explicitly by the score, and we shall here assumethat the class to which the
score explicitly refers is the class which excites suspicion in vifthie of excess over expectation.
The vector likelthood is then the area of the curve to the rig\ht of the ordinate specified by the
critical ratio, 1.e. D
B(X>ho)=1— A(—w, + DESLE( X > ho) L)
The formule (i) and (ii) are applicable to any gyrﬁzﬁietrical sampling distribution normal or
otherwise, N

Example. Kendall's table cites for A — 3,(X = 3o), the value 0-895865. In accordance
with (i} the theoretical frequency of a deviation numerically as great as 3¢ regardless of sign is

2 —2(0'99865) = 0-0027.
The odds against are therefore 99\73‘:“27 ==370:1. In accordance with (ii) the thcoretical
frequency of a positive deviation asPgreat as 3o is
71— 099865 = 0-00135.
The odds against are thﬁf@férc about 740 : 1.
. gf\ * *® ¥ # * *® #

Our last nl}g;eﬁicil example provides an opportunity fer being more explicit than previously
about an 1ss:ue'wtlﬁch is relevant to what follows. T'wo numerical values of the critical ratio
have a special iriterest, viz. the 8o level cited above and the particular value 0-6750 (vide 6.02
infra) sometimes called the probable error. 'The latter defines a modular likelihood of 0'5, i.e.
equal odds for or against the occurrence. For reasons which we shall discuss at a later stage,

the particuI.ar Interest which attaches to the 3¢ level resides in the fact that the odds against
occurrence increase very rapidly thereafter, as shown by the following :

Critical Ratio Modular Likelihood Approximate Adverse Odds
30 0-00270 3701
a1 0-00194 5001
32 (0138 T 1
33 -00098 1,400 ;1
34 (-00058 1,800 :1
3-5 00045 22001

40 Q-00eH1G 1 G'.O(;O 1
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At the 2o level the adverse odds are about 20 : 1, and thus increase about 18-fold in the interval
between 20 and 3o, Between 3o and 4o they increase about 45-fold. "The 2o level has nothing
vo commend it, other than the fact that it is casy to remember the modutar likelihood {5 per
cent.) and the corresponding adverse odds. What merits any other specificable values of the
eritical ratio such as the probable error or the 3¢ criterion enjoy is an issue which comes into
ciearer focus if we distinguish between two objectives which a significance test may subserve.

After cxamining a class of phenomena, we may be led to the conclusion that only one
Liypothesis in common parlance makes sense of the data.  If the requirements of the hypothesis
are numerical, we may then want some assurance that the fit is satisfactory. If the numerical
divergence between theory and observation falls near the 0-675¢ level, we can then say that
agrecment is satisfactory in the sense that even greatcr divergence would be somewhat more
commeon than a discrepancy smaller than the observed one. Tn assessing the fit as satisfactory
in this scnse, we make no assertion about how often we should err by acting ointhe assumption
that the hypothesis correctly describes the class of situations which invokaits guidance. In
fact, we merely record the judgment that the observations we invokegthtest its truth do not
disappoint the hope which motivated the test. We therefore procged -on the assumption that
the hypothesis is a good one, until we encounter new informationayhich compels us to modify
or 1o discard it. N\

'The situation discussed in the last paragraph is one whiel ‘arises when there is some new
synthesis of knowledge, and we may ilfustrate it by an appropriate example, Inone of Mendel’s
origiral experiments he obtained a progeny of 5474 roufidvand 1850 wrinkled peas. Hypothesis
prescribed a 31 1 ratio of round to wrinkled, i.e. an expectation of 0-2500 for wrinkled. The
observed proportion was 1850 - 7324 = 0:2526, The s.d. of the theoretical distribution calcu-
Jated in accordance with the formula on p. 14Qds approximately 0-0050, and the prebable error
{0-675 &) is approximately 0-0033. 'The deyiation 0-2526 — 0-2500 is 0-0026, and is therefore
inside the range which defines equal odds, ™

Such situations arise when thepelis a comprehensive synthesis of theoretical knowledge
bringing a diversity of phenome a’\hii:herto unco-ordinated within the framework of a s.ingle
generalisation. It would be difficilt to cite an example from the social sciences, and it 18 an
exceptional happening in bio\l‘(igj( to date. Only in the physical sciences is it a considerable
preoccupation of statistica%ﬁrocedure. That this is so, may partly explain why frlathfinlatLCIanS
in contact with experimefital physics commonly espouse the viewpoint which. 1dent1ﬁfas pl:ob-
ability exclusively wit e frequency of external events. For what is characteristic of situations
comparable to the above is that no explicit assessment of the frequency of making a correct
judgment cnt,cgs’ﬁito the interpretation of the test.

In the fough and tumble of operational research in the domain of biology, psycho’logy or
economics, we rarely undertake a test with 8o unique an aim. More ofteq than qtherwr'se, the
end in view when we performa significance test is to arbitrate on the respective m_erlts o_f dzﬁerfmt
hypotheses, of which (@) one has more general app]icability to the class of‘situatmns wn‘:h which
we are concerned ; (b) the other is (or others are} in closer agreement with the numerical dat:a
of the total situation at face value. The customary procedure is to accept the latter in
default, if the likelthood assigned to the event by the former, ie. the null hypothesis, falls short
of an arbitrary limit defined by the critical ratio, e.g. 20 or 30, according to taste. ‘In general,
the pull hypothesis is therefore the comservative hypothesis, i.e. the hypothesis which accords
most commonly with our prior knowledge of the background situation in the absence of the
additional information which the event jtself supplics. ]

So far, we have paid no attention to considerations which are relevant to the cl_m:ce of such
a limit in a particular class of background situations. 'The following problem will serve as a
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model. If 2 man spins a coin ten times and scores nine heads am I to conclude that the penny
has a bias ? ‘The implication is that the bias favours heads. So the question involves choosing
between : (i) the hypothesis that there is no appreciable bias (p = & = ¢); (ii) the hypothesis
that the penny has a bias (p >4). If we agree to accept (ii) by default, we do not have to raise
the issue of estimation, since the hypothesis we erect to mullify as a condition of our preference
for the other specifies the relevant parameter of the putative universe.

Since the possible bias with which we are here concerned has a specified direction, we may
make our assessment of the theoretical frequency of the occurrence in conformity with the nofl
hypothesis in terms of its vector likelihood as defined above. The expectation of scoring more
than eight heads in a 10-fold trial is 10()® + (3)® == 7137 or odds of 93 : 1 against the ocour-
rence. Vis-d-vis the common practice of regarding a deviation beyond the 2o level as significant,
these are high odds ; but the fact that the odds are high docs not suffice to provide an ¢xact
answer to our question, if we interpret it in an operational sense, viz. shall Ibe fight more often
if I act in accordance with hypothesis (ii} that if I act in accordance with. Bypethesis (i) ?

When faced with such a choice we have seen that an exact answer involves due considora-
tion to the prior probabilities. 1f the prior probabilities were equal wé should certainly reject (i),
since we can construct an indefinitely large number of hypothesestof type (ii) by postulating
different values of p between } and 1 ; and any such hypothesis’would assign a higher likelihood
to the event. Clearly we have no grounds for supposing thatll such hypotheses have as much
and as little to commend them as the hypothesis which préedicates no appreciable bias ; and the
situation illustrates the difficulty of applying Bayes’ agioin if we concede its validity. Although
we have no basis for assigning a numerical value to theprior probabilities involved, the atterdant
circumstances may be such as to justify the assydiption that (i) has a much higher probability
than (i). A variety of factual information nefidisclosed in the preceding statement wouid in
given circumstances prove to be more or<J¢ss relevant: whether I have good grounds for
believing that coins of the realm in generalfiave no appreciable bias ; whether I am free to examine
the penny and reinforce my conﬁdenqq’in\the belief that it is in fact a coin of the realm ; wheiher
I have greater or less experience of deunterfeit coinage ; whether I know the man to be financially
honest ; and what proportion of Tmen in general are endowed with habitual honesty w.r.t. the
consequences of spinning a coil,)

The student will now appreciate a good reason for exhibiting the eighteenth century museum.
piece which was the s bject-matter of 5.01. The important issue which Bayes’ balance sheet
brings into focus is tl;§‘ a hypothesis with a high intrinsic likelihood may have a low opera-
tional value, if it has\very low extrinsic commendability. If we reject Bayes' axiom as a mere
act of faith whielt Db experience can justify, we are therefore driven to the follewing conclusions :

{a) we shotld act in accordance with a hypothesis which expericnce shows to be usually
apphcab.le to the relevant class of background situations, unless it assigns very high odds against
the particular occurrence under consideration ;

(§) since we commonly lack exact knowledge about how often the conservative hypothesis
does in fact apply to relevant background situations, what odds we regard as high involves an
act of judgment embracing an intimate knowledge of the subject-matter.

There' is therefore no universal criterion of what is hugh or low in this context ; but the fact
that there is no such universal criterion endows with a peculiar interest the rapidity with which
adverse odds increase beyond the 3o level. If the null hypothesis, which is commonly also the
conservative hypothesis, ascribes to an event a critical ratio above 3, an alternative hypothesis
O_f very low commendability (i.e. prior probability} may have higher operational value, if it
assigns a relatively high likelihood to the event. Conversely, one may well hesitate to embrace
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siich an alternative hypothesis, if the conservative hypothesis assigns a lower critical ratio to
the event ; but this does not mean that we should reject it.  All it signifies is that the matter
invites further investigation. In any case, there would seem to be only one logical alternative
to acceptance of the Bayes postulate—or, what is semantically equivalent, the principle of maxi-
mom likelihood.  If we reject it we have to recognise a sliding scale of critical ratios ; and
the cperational value of a particular significance level involves an act of judgment which the
investigator at home with the materials of the problem cannot afford to relegate to the
mathematical specialist who has no first hand familiarity with them.

Ty the same token, the investigator at home with his materials (and others who share rele-
vant familiarity with the background situatien) has then to be the arbiter of what critical ratio
justifics more or less confidence in rejecting a null hypothesis. This makes it important
to recognise two different criteria which motivate the acceptance of the hypothesis one selects
for naliification with a view to adopting an alternative hypothesis by default, "One may do so
primarily because it is the only plausible hypothesis which is itself susceptible.of exact statement
or heeause it is the more conscrvative alternative of two hypotheses eich’ amenable to exact
statement. In practice, the distinction is not clear cut. "The fact thata given hypothesis is the
only available one susceptible of exact formulation very often signifies that it is the hypothesis
= line with common experience of the background situation. .Qn the other hand, the specifica-
tion of a hypothesis as conservative is itself open to more thangne interpretation. The investi-
rator may have special sources of information, which poip,t{})fthe view that a generally accepted
hypothesis has less applicability to the background situatierl than current well-informed opinion
voncedes.  If so, a critical ratio which would reinforeevthe investigator’s confidence would not
necessarily commend the alternative hypothesis td, a critic without disclosure of information
which Hes outside the scope of statistical analysis. To *hat extent a statistical judgment can
invoke agreement only in so far as it invites ¢he' exploration of a middle way.

This implication of the credentials of a statistical judgment at the operational level has a
special relevance to the theme we shallnéxt pursue, namely the search for an explicit formula-
tion, of the limitations involved in §otealled significance tests which involve an act of estimation.
Our next objective will be to give ptecise specification to the frequency with which errors of a
given magnitude arise in thjs\’élOmain. In accordance with the viewpoint of the foregoing
sections, the terms of refer ,E;e of such 2 specification must address themselves to the assent of
investigators who do nogeshare the same relevant knowledge of the background situation. In
short, a satisfactory st\a&&ﬁént of the relevant data should also be an implicit invitation to agree-
ment with respect te'yhat magnitude of sampling error has a frequency too low to compromise
the verdict of the(test.

503 PROPORTIONATE ERROR OF ESTIMATION

In any use we make of the critical ratio within the domain of taxonomic scoring, it is necessary
to draw a distinction between two classes of null hypotheses :

(i) the nult hypothesis which explicitly postulates the exact value of the expected propor-
tionate score p, or raw score 1p, as when we test (Chapter 3) the progeny of a mating to
ascertain its conformity to a particular Mendelian ratio ;

(i) the null hypothesis which compels us to rely on an estimate of the parameter p, as
when the end in view is the recognition {Chapter 4) of a real difference.

As regards (i), the only issue at stake is one of verification, i.¢.: is the null hypothesi.s accept-
able or otherwise? We then bave to interpret the odds assigned by the critical ratio in the



208 CHANCE AND CHOICE BY CARDPFACK AND CHESSBOARD

1601
r=400
h=2

8

Pipy = Proportionate Error on p
op = Proportionate Ertor on &

PROFORTIONATE ERROR

—80 N N
FiG, 54. The errer involved in estimating the s.d. of*he proportionate score distribution is always smallcr than

the error involved in estimating the“value of the true proportion of successes.
N\

light of considerations discussed in{5:02 with due regard to the possibility that our sample is
not very representative of the umiverse from which it comes. The alternative type (ii) of null
hypothesis raises quite anothér'issue. Ceteris paribus everything turns on the magnitude of
the error involved in assign@tg“an appropriate value to p on the basis of data derived from sampling
alone. 'The kernel of theproblem of statistical estimation is to safeguard ourselves against
distortion of judgmeg{attributable to errors from this source.

It is scarcely ngcessary to labour this distinction. Indeed, every thoughtful student first
confronted with"“the procedure for detecting a real difference adopted in 4.08 must have
experienced\‘i mnisgiving, which we may formulate as follows. Our only source of knowledge
concerning the true proportion p in the putative common universe, being the pooled sample of
(a + b)-items before us, is subject to an unspecifisble sampling error on that account ; and any
conclusions we base on the critical ratio of the proportionate score difference with respect to
sub-samples of & and b items is likewise subject to an unspecifiable sampling error, since the
value assigned to the s.d. of the proportionate score difference distribution depends on what
value we assign to p itself.

WEE shall_now examine how far it is possible to assess the order of magnitude of the

 uncertainty arising from this circumstance. At the outset, we can fortify sclf-confidence by the
coqsﬂe_ratinn that the impossibility of specifying the exact value of a parameter does not neces-
sarily signify the impossibility of specifying how often we are liable to make an error of a given
order of magnitude in assessing it, and hence how often any judgments based on what value we
do assign. to it will err beyond specifiable limits. It will clear the ground for a2 new approach to
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this issue if we make explicit in our formule both what we do know with certainty and what
we do not know when we apply c-tests, as in Chapter 4.

Let us suppose that we have before us an estimate p,; of an expected proportionate score
based cn a sample of (@ + &) = ritems. We do not actually know the true value p of the pro-
portion of specified iterns in the putative parent universe. So we do not know the exact value of
the standard deviation of the proportionate score distribution in a sample of & items, of b items
or of # items. To make this uncertainty explicit, we therefore assume that p differs from p,, by
an unspecified error e which we can express as the product of a critical ratio  and of the true
standard deviation o, of the proportionate score distribution in an r-fold sample. In this way
we can investigate : (4) how big an error arises in our estimated standard deviations from a
given proportionate error w.r.t. the value pg, assigned to p; () the odds that the error inherent
in the estimation of p or of parameters based thereon shall not exceed a spegified order of
magnitude ; (c) hence the odds for or against making an error of a given magnitude in assigning
any critical ratio based on the estimated standard deviation of a score or scofe difference distri-
bution w.r.t. 2 sample of given size. « M

H fra = (1 — gup) is such an estimate of the unknown true value of thé parameter p = (1 — g),
anid € = By is the error of estimation w.r.t. p, all we actually know ‘dBout ¢ and o is the odds
that their ratio & will exceed a certain level in a sample of (@ -+ &)= 7 items. For instance, the
odds are roughly 20 : 1 that a deviation will not exceed twice the's.d. (g,) of the p distribution,
so that the critical ratio % will not exceed 2. We can thus explore the consequences of assigning
different values to & within the framework of the foﬂowjng,\relaﬁons which are necessarily true :

P=pa T and ~p@¥p-—e . ) ) . R ()

¢g=¢a—c¢ amdyu=gqg+e . . . . . ()

I . N\Y '

o=~ —}-b\ . . . : . . . (iii)

o HiVEg @)
’.:\/(a -+ &)

The customary method of testitg for the existence of a real difference between proportions of
ltems in two samples as sep-farth in 4.09 is to set up the nuil hypothesis that both samples are
referable to the same uni¥erse or to two identical universes, If so, the expected proportionate
score difference is zered Accordingly, we compute the s.d. of the difference between the
proportionate scores'ef two samples of appropriate size (a and &) on the assumption that the best
estimate of the €orrmon p implicit in our null hypothesis is the pooled sample value p;. The
unknown true valte { ) of the s.d. of the proportionate score dfference distribution w.r.t. samples
of @ and b items from the same putative universe, and that of our estimate (sq} * based on p,, are
respectively given by

a4 b
gé:%—}—'%g: q( ;';). . . . . . B (V)
1B — &g 4 eXa +B) .
53 = Pub Gop - (a 7 ) = (p — ) 2 . . . (i)
Hence, it follows that
9_(—9e+9_;,@=9 < . @
o ?q P9 Pq

*We here neglect the refinement of 4.09 on the assumption that cur pooled sample is large.

14
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From (iv) above
g _q M9 ¥ L. L ()
p- R B SR +5 ’ )
7 Vpala +8) @

As they stand, the foregoing equations are merely tautological ; but they suffice to gikve us
a new insight into the relation between a proportionate error P,;, in the estimation of * and
the proportionate error Py, in the estimation of &g For our present purpose, !_t_mll suffice
to focus attention on the values o, may assume when p is in the nelglﬂ?gurhood o[ 50 per cent,
"The student may derive profit from exploring the implications of (viii) at the oppesite limit,

when p is very small, so that (p — ¢) =~ —¢. By definition

/b /g )
P(p) = - = k? P Bq_ : A - 64
P pva-l-b  Vpla-t+b) .
¢\
Pey=20"%.q 2 O . ®
T3 T3 A\
Whence, from (viii} above, }‘:
—_ .?«;‘ % .
Pe)=1— [1 =9 (O ] T )
Vipgla +b) 30 )
At the 50 per cent. level, i.e. when p = } = g, (xi) redu}cs to
Plo) =1— [1 — —r—-gi :5)] e ()
@

™

In general, the ratio 2% : {a + &) T will be;;lcs’s.than unity, and its square, cube, etc., will therefo're
be small in comparison with it. If e expand the expression in brackets by the binomial
theorem as in Ex. 1.04, p. 29, reje@ng all terms after the second as negligible for the reason
stated, we have A\

Py~ 1 [1 B ] I (xiii)
"\.j\’f")* LU T %a+bd 2+b
Subject to the same;'\&a'ition that p = 1 = ¢, (ix) becomes
' AN h
& P(p)= .
N/ (?) vVa -+ b
From this it follows that
h .
P — m———ee P N . . . - - bl (le)
() e (#)
For & = 2 when p is in the neighbourhood of 50 per cent. we therefore have
1
Ploy=—.P . . . . . . . . (xv
©) = 5z P(2) (xv)

* For reasons explained below we here consider only values of  less than or equsal to 4.

T That we may inveke the normal distribution in this context signifies that we are talking about large samples,
s0 that {¢ 3 b) is a large number, On the other hand, values of A greater than 3 can occur very seldom. -
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The importance of the foregoing investigation resides in what we know about %, i.c. that it
suffices to fix the magnitude of e. 'Though we do not know its actual numerical value, we do
know the odds against an error as great as Ao, for any arbitrary value we care to assume w.r.t.
B itself. 'To say that the odds are 20 : I against the occurrence of a p,, deviation exceeding twice
the s.d. of the p-distribution for an r-fold sample is to say the odds are 20 : 1 against an error
exceeding the magnitude of a deviation fixed by 2 =2. The odds against an error exceeding the
limit fixed by the critical ratio £ == 4 are, of course, enormous ; and in that case the propor-
tionate error of estimation involved in assigning a value to o4, when p is ncar the 50 per cent.
level, is in the ratio (2: V/#) times the proportionate error involved in assigning to p the value
pap-  Hence p,p will rarely deviate so far from 50 per cent. as to affect grossly the valuc assigned
to the s.d., if the pooled sample of {a¢ + ) items is large. By the same token, errors of estimation
w.r.t, p will rarely distort the critical ratio for the sampling difference so gregsly as to invalidate
the e-test of 4.08. A\

For illustrative purposes, let us suppose that the pooled sample of #5400 items (Fig. 54).

If p were exactly 50 per cent., we should have >
05 % 05 LN
o= YE2E 0% g5

For the critical ratio & == 3, the corresponding deviatiqr\would be 4 0-075. For the reason
stated in 5.02 above, we can thus say that the odd Avwuld be (p. 204) about 370 : 1 against
an observed value of p, lying outside the range 425 to 57-53; and the proportionate error
w.r.t, the estimation of p at either of these limits wolild be 15 per cent. in accordance with (ix).
‘The corresponding percentage error of the s.d f® the proportionate score difference distribution
with respect to a-fold and b-fold samples ingecordance with (xiv) would be approximately

>;' 15 = 1-125 per cent.

2. V40

Evidentiy therefore, fairly gross éxfers w.r.t. the estimation of p near the 50 per cent. level in a
sample of 400 will have little €ffect on the critical ratio of the c-test for the significan ce of the
difference d = (ps — pp). »This example thus suffices to justify two conclusions, oiz.

{a) We can give p{:bc\n;e specification to our legitimate confidence in a value assigned to a
critical ratiouery the basis of an estimated parameter, whose exact value is nof implicit
in the null\hypothesis under investigation ;

5 In sReC'rﬁable circumstances depending only on the order of magnitude of pe and of

L

7 £ (4 7+ b), we can assume with confidence that the c-test of 4,08 for the detection of
a real difference will rarely let us down.

An exact specification of the relevance of both quantities mentioned in () to the assurance
with which we are entitled to interpret an estémated likelihood assigned to an event by our null
hypothesis is a matter which will not concern us further, because the method dealt with below
provides a more satisfactory way of dealing with the same issue. It suffices to say that (ix)
and (xi) disclose all the relevant data.

504 CoNFIDENCE LimMmiIT

Tilt the recent contributions of Neyman and Egon Pearson, it was customary to frame the
problem of estimation in its simplest form on the assumption that it is meaningful to ask : what
is the best estimate of a parameter p consistent with our sample data ?  The standpoint we shall
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now explore seeks no answer to this question which it rejects as unanswerable and in that sense
without meaning. Instead, we shall ask : what is the expectation that such a parameter will
lie between certain specifiable limits ? 'To keep our feet on the ground, let us consider the
following result of a therapeutic trial. In a sample of 496 individuals subjected to a specified
treatment there were 397 (80 per cent.} cures and 99 (20 per cent.) failures. Our problem is to
state as precisely as possible the prognosis of cure.

As a first approximation to such prognosis, we shall adopt the traditional approach, ie.
assume that sampling errors of sufficient magnitude to distort grossly our assessment of the s.d.
of the distribution w.r.t. the proportion of cures will not occur frequently. Accordingly, we
shall postulate that the proportion of cures associated with the treatment involved will not
commonly differ from the sample value, i.e. 80 per cent., by any. quantity which will grossly
affect the computation of o. We therefore write p ~ 08, ¢ =~ 0-2, and (a +-b) = r = 496, so
that \

08 x02 O\

496 \

N

. ¢ 0018, ~\

al

For a deviation of 2¢ = 0-036 within the framework of the asslim-[:;tion stated, we may thus say
that the observed value of the proportion. (p,) in any samplewof 496 would lie within the limits
0-80 & 0-036, i.e. that any such sample value will lie betwegn 0-764 and (:836. Since the odds
are 20 : 1 against the occurrence of a deviation as greatias 2o, the odds are 20: 1 against the
possibility that the proportion p, of cures in a second\sample of the same size would lic outside
these limits, if our initial assumption is justifiable, “n accordance with the same initial assump-
t.ion, the odds are 370 : 1 against the occurreqcb'b'f a deviation as great as 3o, Le. that p, would
lie outside the limits 0-80 + 3(0-018), i.e. oirtside the range 0-746 to 0-854. In so far as we
are entitled to assume that our pooled saritple furnishes us with a representative value of p, we
are thus entitled to regard a second treatment as significantly more efficacious in the statistical
sense of the term, if it resulted in 96 per cent. cures in a sample of 496.

Se far, cur only Justification \ﬁs} such an assumption is the hint offered in 5.03, postulating
that the p of our calculations lfes" within limits of error too small to affect materially our judg-
ment about the frequency with' which other sample values of the proportion of cures will occur
outside a range set by aQnitical ratio specified accordingly. Relying on this consideration, we
have implicitly assumed_that our sample value of p is the best estimate we can make of it. In
short, we have evaded the obligation to define the basis for a precise answer to the
alter_natwe- question’: what is the expectation that the true value of p lies within particular
specified 11.111113::?/ To do so, we must make a fresh start in accordance with the procedure of
5.08, makingvzo assumption about how close to the true value p our 7-fold sample value
Po{= 0:80) lies. Instead, we shall content ourselves with the assertion that the two differ by
an unknown sampling error ¢ = ko. - We shall therefore put

Po=(p—€); go=1(¢+¢) . . N )]

7= By A €)go — €) = Rlpogo + (2 — Po)e — %1,
L R (Po — qu)h?e — h2pyg, = 0.
CE == (Po — go)h* &= V(po — q0)* . h* + 4h% . (r + 2%)Pogo (i)
2(r + h?) ' '
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"The only unknown quantity required for the solution of this quadratic is / the critical ratio of
the sawpling error e. Let us assume that k= 2. Since (a + b) = r = 496, p, = 0-80 and
Gy = 0-20

— 4(0-6) + VBB — 0-8)? + 4(4)(500)(0-16)
£ ==
3000
= 40034 or —(0-038.

Accordingly, we are entitled to say that the expectation is approximately 95 per cent, (20:1
odds) that the true value of p will lie within limits set by + 0:084 and — 0-038 in (i). Since
p == {py + ), this means that p lies within the limits (p, 4 0-034) = 0-834 and (p, — 0-038) =
$:762. 1If we put & = 3 in (ii) we have for samples of the same size

¢ — — (059 or - 0-048. N\

In this case, we can say that the odds are 370 : 1 that p lies within the limits (pg%'0-048) = 0-848
and (p, — 0-059) = 0-741. e\

It is customary to designate as fiducial limits the boundaries ﬁxegl,}::y"a critical ratio calcu-
lated from the value of o by recourse ta the approximation p, == #, apgl to ‘refer to the boundaries
fixed by the solution of the quadratic (i} as confidence limits.  JFot'the example cited, the two
sets of boundaries are as follows : ’

m\J
Critical Ratio Fiducial Limits \ 2> Confidence Limits
2 0764 — 0:838 ) 0762 — 0-834
3 0-746 — 0854 () 0741 — 0-848

505 THE CONEIDENCE SIEVE

We have now at our disposal the megms ‘to remove the misgiving which very properly
arises from the circumstance emphagised at the beginning of 5.03, viz. results from the
performance of a e-test for the rect (ition of a real difference depend on the reliability of the
proportionate score assigned to the putative common universe. We shall therefore return to
the type specimen of 4.02. Théselevant data are as follows :

»\’;\ ) Proportion Attacked Total Number at Risk
Tnoculated (Sasigte A) . - 0-011 279
Untreated (Sample B) . . 0-122 539
. 0-084 818

Total population
We first appl?\(;ﬁ{lation (ii) of 5.04 to ascertain the confidence limits of the pooled estimate
P = 0084 = p — ¢, viz.:
— (Pap — Gua® = V(Pap — ) - 1+ 4 - NPl
< or + K2
Since G = (1 — Pos) = 09163
P — Qo ™ — 0-832;
Pl = 0076945 (P — )" = 0-6922.
R%(-832) £ AV(0-8922)h% 1 4(818 + h?)0-0769
€= 1636 -+ 2h? :
Ifh=2 e=+002147 or — 0-01742.
Ifh=3, e=-+003381 or — 0-02476.
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Since p = p,, + ¢, the confidence limits are {to 3 decimals) :
When h =2, p=0084 + 0021 and 0084 — 0017,
When =3, p=0084 0034 and 0-084 — 0-025.
Thus the odds are 20 : 1 that the true value of p will be within the range 0-{03 and 0-067 if the
null hypothesis is correct, and 370 : 1 that the true value of p will li¢ within the range 0118 and
0-059.
When applying the c-test in the usual way we take 0-084 as our estimate of p, so that ¢ ~ 0-916.

The observed proportionate score difference of the two samples is 0-122 — 0-0L1 — (-111, and
the estimated variance (s3) of the difference distribution is given by

1 1 ~
(0-084 % 0-916) {‘2% + 5—39} A
818 N
= 00769 {150381}
= (0-0769)(0-00544) R
— 0-000418 )

5, = V0-000418 = J0§°0204,
RS
Hence the estimated critical ratio of the proportiogiate score difference is
0-111 = 00204 ~ 5-4.

If we abandon the presumption that 0-084 is the best cstimate of # in the putative common
universe of choice in any sense other thag the lack of any means of specifying a single alternative
which is quite certainly better, it isshill possible to investigate the value of the critical ratio for
the difference at the limits of 2 sp@iﬁed confidence range of p values. For the confidence range

defined by 2 = 2, we have >\
Upper it p, — 0-105; g, — 0895 ; pyg, — 0-093975.
Logetdimit. py—0067; g, —0:933; pg, — 0-062511.
These give us mfp~,}iﬁn1;:i11g estimates of oy, iz, :

.\’ 3

~O (i) V{(0-093975)(G-00544) ~ + 0-0226.
A% (ii) V(0-062511)(0-00544) ~ -+ 0-0184.

The corresponding critical ratios arc

1) 0-111 =+ 00226 ~ 4.9,
(i) 0-111 =+ 0-0184 ~ 60,
We may thus derive with 95 Per cent. expectation a figure over 4-8 for the critical ratio of

the observed difference in conformity with the null hypothesis, a finding which makes the like-

Iil}ooc_l of the event extremely small. we may wish to apply an even more exacting
criterion.  With odds of 370 : 1 we may prescribe confidence limits to 2 as follows :
Upper imit, p, =

0-118; ¢y = 0982 P:9s = 0-11588.
Lower limit. p, =- 0059 ; 9. =0941: p,q, — 0-0555.

However,
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These give two new limiting estimates of o4, viz.:

Gii) /(0-11588)(0-00544) ~ - 0-0251.

(iv) V(0-00555)(0-00544) ~ =+ 0-0174.

The corresponding critical ratios are
0-111 = 00250 =~ 4-4,
0-111 + 0-0175 =64

Evidently there is no limit to the procedure outlined, if the end in view is to make the test
more exacting,  In practice, it is possible to explore the error involved in assigning a numerical
walue o the critical ratio of a score difference by a less laborious procedure, which, is somewhat
less precise.  For reasons outlined in 5.03, the fiducial limits of an estimate ushally lie close to
¢he confidence limits at the same critical level ; and it is always safe to agsume they do so, if
{5) the number of items (7) in the pooled sample is fairly large ; (b) the pobled sample value of
the proportionate score is neither very small nor very large. For thigexample, we have already
{ound the s.d. of the distribution of the pooled sample value for $18items is

/{0-088{0918) +818 20-0397'. ’

R -
Hence we have the following values for the fiducial and donfidence limits of p:

Critical Ratio Fiducial Limits\.) Confidence Limits
2 0-064 — Q103 0067 — 0105
3 0:035 &0%113 0059 — 0118

~ ) 3

Since the fiducial differ so little fromi the confidence limits, we should not go far astray if
we contented ourselves with a speciﬁta\ion of the range within which the critical ratio of a
difference lies by using the alternafi@& Values o, assumes for values of p at either corresponding
fiducial boundary. The importange of the confidence sieve is that it provides a rationale for the
¢-test when the null hypothesi&pféscribes no specification of the necessary parameter other than
information inherent in the sinfxple itself. In practice, it is rarely necessary to apply it,-when the
range assigned by the cfudér method of fiducial limits is very small. Even if this is not so,
recourse to fiducial H}‘fk& (Fig. 55), which are easier to compute, usually offers a sufficient safe-
guard against oveg=confidence, if we use them with due regard to the fact that they do_ not neces-
sarily tally clpsefy. \with the true boundaries of the confidence range and may deviate grossly
therefrom, Indéed, the two sets of limits diverge widely, if the sample itself is small, for extreme
values of the estimated parameter p. What constitutes a large sample in this C(')ntext, an'd when
we are to regard an estimated value as extreme in this sense, are matters on which experience of
statistical data must dictate the necd for more or less caution w.r.t. procedure.

"I'he method of 4-08 which assigns a critical ratio to the actual difference between propor-
tionate scores of two samples is not the only way of dealing with the same issue.l 'In 4,01 we
provisionally explored an alternative procedure : ar¢ the values 0-011 and 0-122 admissible s.amp]e
values of one and the same universe from which we extract 279 and 539 items respectively ?
If we are content to regard (-084 as the best value we can assign to the putative common universe

we derive for sample A N
. [JOUBHONE) o417
T = a/ R 7 I
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CONFIDENCE AND FIDUCIAL LIMITS ©F P

o0, r= 400
90

80

Contidence Limits ~—-

T Fiduial Limets ---vv .
e

0o 10 20 30 40 50 g’g\ 70 a0 2} 100
FIG §5. ExcePt at extreme values, the confidence range withim ’th'ch the true proportion (p) of successes in the
universe of choice corresponding to an observed value Py tallies ‘elosely with the fiducial limits for crirical ratios

from 2 tg 4%
CW

al

The deviation of the sample value 0-011 fiom the estimate p ~ 0-084 is 0-073, and the critical

ratio is. (0-073) - (0-017) 2~ 4-3, At the. confidence limits corresponding to 4 = 2, we have
two estimates of o, : A\

(i) v?Q‘des)(o-S%) + 279 e~ £ 0018,
(i)W (0067)(0.953) =278 ~ £ 0.015,
The corresponding 5:\1"iﬁcal ratios are

O (0105 — 0011) = 0018 52,
N (0-067 — 0-011) ~ 0-015 ~ 37,

At the mnﬁ&;‘:ﬁ\cé limits for 2 = 3, we have as our two estimates of o,
(i} V(0-118)(0-882) = 279 ~ + 0-019.
(1) V(0-058)(0-941) = 279 ~ = 0-014.
The corresponding critical ratios are
(0-118 — 0-011) + 0-019 ~ 5-6.
(0-059 — 0-011) = 0-014 ~ 3.4,

This result illustrates a good reason for preferring the difference-distribution test. ‘The

divergence between eritical ratins assigned at corresponding pairs of confidence boundaries

- by the latter is less than the last set of figures exhibits ; and this is generally so, for a reason set

L ]
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forth in 5.03. 'The proportionate error involved in the estimation of an s.d. is less than the
proportiopate error involved in estimating the parameter p requisite for its specification. Whereas
a ¢-test based on the sampling distribution of a difference makes no use of a p estimate except
as 7 means of computing the s.d. in the denominator of the critical ratio, the method last given
invelves the double disadvantage of employing a direct estimate of p in the numerator of the
critical ratic, and hence a figure w.r.t. which the proportionate error of sampling is necessarily
greater than that of the s.d. alone. In general the c-test based on the sampling distribution of
the difference itself is therefore the more sensitive and the less equivocal. On that account, we
speak of it as a more efficient statistic.

fn stating that the procedure of 4.01-2 is less efficient than the difference-distribution test of
4.08, we have assumed that our only concern is to test the validity of the null hypothesis that two
samples come from the same universe. In practice, it is also of interest to go astep further.
Instead of being content to say what the rejection of the null hypothesis signifies, that one treat-
ment is more efficacions than another, we may wish to know how much improvement will result
from substitution of one treatment for another. ‘The difference test does ‘@bt entitle us to give
any precision to an assertion to this effect. On the other hand, the“procedure of 4.01-4.02
offers us an alternative formulation of the problem. At a given cépfidence level we may say
that our estimate p, of proportionate success with one treatment (ﬁ) does not exceed a limit I,
and that our higher estimate p, w.r.t. the alternative treatment (B)does not fall short of I, Thus
we can assign a precise measure of confidence to the assertiopt that treatment B is 1007, — /)
per cent. more efficacious than treatment 4. o\

These considerations invite comment on the inceeasingly prevalent custom in recent text-
books of prescribing as the correct procedure for testing the reality of a treatment difference a
4-fold table such as that of Exercise 4.02, Nos, d%3, with a view to performing the Chi-square
test for 1 degree of freedom. As we shall segiin Vol. 2, and as Fisher (1922) was the first to
peint out, the latter must give exactly the same result as the c-test for a difference as sc_at out in
408. Algebraically and numerically thetwo tests are in fact equivalent ; but the rationale of
the Chi-square test relies on much @ioré advanced algebra, having therefore lesls to commend
it on heuristic grounds alone. Asjdxom this, the practice referred to is exceptionable .for two
reasons : (a) a 4-fold table of the’sort shown in Exercise 4.03, Nos. 1-3, Fnerely summarises the
data with a view to performinig’the test, being of no further use, and fails to exhibit the face-
value order of magnitude of'the difference involved ; (5) the prescription of the test itself exc-ludes
the possibility of assigging a confidence level to the odds for or against the occurrence if the

null hypothesis is trugs , . .
The Neyman §igve points to a way out of an impasse which arises when the obfs,erved
PR in a small sample is zero. In accordance with. the

proportion. of ttems of a specified class i . :
traditional procedure we should then havé ‘to regard the best estimate of p as zero with zero
of 5.04, we get

range between the fiducial limits. If we put pg, = 0 in (ii}
A2
€= f————_]_ 7

At the critical level » = 2, the confidence range therefore extends from zero to 4 < (r +4)
cation of the odds in favour

and at ; = 3 from zero to 9 = (r +9). However, the exact specifi .
of an error located at either boundary will not nsually be such as we can infer from the normal

distribution, because the normal distribution gives a good fit for very small values of p only if

r itself is very large.
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508 SICNIFICANCE AND SAMPLE SI1ZE

A type of question to which research workers in medicine often seek an answer takes the
following form : will samples of such and such a size suffice to demonstrate a significant
difference between two treatments ?  So stated, the question admits of no singulur answer : byt
it raises an issue which is of sufficient interest to merit examination.

In this context, as throughout this chapter, our concern is with taxonomic score differences,
e.g. differences w.r.t. the proportion of sampled individuals among whom a given treatment
evokes or fails to evoke a particular response. 'We have seen that we should distinruish between
two sorts of answers obtainable from a significant test relevant to such. Only one of them was
our concern in Chapter 4, where we sought an answer to the question : does a real difference
exist, 1.¢. is treatment A better than treatment B or wice versa # It is then necessary to remember—
and all too easy to forget—that 2 difference which is highly significant is\the statistical sense
may be utterly trivial at the operational level vis-d-wis the return we géb frbm a much greater
outlay of effort or of limited resources requisite for other objectivesy Mror instance, a 0-15 per
cent. difference between the relapse rate for syphilis on short-term.drsehotherapy and the relapse
rate for syphilis treated with a new fungus extract of the penicillif“streptomycin cluss in favour
of the latter might be highly significant if the two treatment.sdwdples were both very large ; but
a difference with a confidence range of 0-10 per cent. to 020 per cent. might be of no practical
interest if available supplies of the alternative drug wereif’much greater demand than arsenicals
for other classes of patients, In general, it is of }MI& interest to know that one trcatment is
better than another, unless the lower limit of the cqﬁﬁ'dence range we impose upon the difterence
leaves a margin of relative efficacy appropriate telthe dictates of considerations which lie outside
the proper province of statistics. How big such a margin must be is not an issue in which the
statistician should have to adjudicate. "

Let us first deal with the more restricted—and more academic—issue raised in Chapter 4
by asking what size of sample is apprépriate to the recognition that a real difference exists. What
the statistician can say when asked é\huestion of this sortis : the size of your samples must be such
and SU'C'}.I, if the proportionate difference you wish to vindicate is as great as so-and-so. An honest
answer in such terms presypposes that there is already agreement about our criterion of signi-
ﬁ-.::a_nce, 1.e. the lower bqundary of the confidence range we are prepared to impose on the
dlffercnt.:e involved ; <afd this is a matter which invites due consideration of our prior knowledge
of the situation in ghe'light of the foregoing exposition of Bayes’ theorem. In any case, IO
answer to thf" clags of questions with which we are here concerned is in fact possible unless we
place some hmtatwn on the relative, as well as the absolute, size of the two samples which we
select in ordento test the existence of a real difference. In practice, it is desirable, and evidently
cconomical, to f:hoose samples of comparable size. For what follows, we shall therefore assume
that we are talking about equal samples, so that @ = 7 = b in the symbolism of 4.07-4.08. 'Thus
ab=17% (a 4+ b) = % and

1 1 2p.. . i
Tf = Py - Qaa(; +B) = ‘Pa—:-g@ ' ’ ' ' -0

szwz

. . . . . . ) . (i
zpab M gab ( )

. W;th due regard to t,he inescapable limitations mentioned above, an evaluation of sample
size relevant to the: detection of a difference of specified magnitude at a given confidence level,
involves the ma:

gnitude of the relevant proportionate score P of the pooled sample from the
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putative COMmMOn UNiverse of the nu!l hypothesis. This is necessarily so, because the standard
deviation: of the difference distribution, and hence the critical ratio of the observed difference,
is a function both of p,, and of the size of the individual samoples. Hence, the best answer wc
can give to our first question calls for separate tabulation w.r.t. different confidence levels of
sample size requisite to validate an observed difference of a given magnitude in terms of the
magnitude of p,, itself (vide infra, 5.07). On the assumption that the significance levels
included in a table such as Table 1 suffice to justify our assurance wis-d-ois a particular situation,
it gives us an answer to the question : does a real difference exist? It tells us nothing about
how big the ditference is.

As the criterion of significance Table 1 actually specifies fiducial, as opposed to confidence
limits, which, as Fig. 55 shows, closely coincide with the former except for very small values
of p; but the distinction is immaterial to our purpose which is- merely exemplary, and
with that end in view it does not much matter whether p is a parameter of the putative common
universe of the null hypothesis or a pooled sample estimate thereof. The progedure embodied
in the build-up of the table is as follows. If we impose a fiducial range of_3- 3o as our criterion

of a rea? difference, so that 62 == 9, (i) above becomes O\
"pa — o) —9 ‘\
QPa\b Gy ‘-

Within the framework of the assumptions stated, let us. Adw suppose that the parameter pg, of
our putative universe has the value 0-25, so that p, 2Ny = (0-25)(0-75) = 0-1875. If we now
wish to detect a difference d = (p, — p,) as large a8 3 per cent. {0-03)

n008)F _
o01875)
LN 92.(0:1875)
T 70009
o = 3750.

N\ <
Accordingly, we find the éntry 3750 against p = 0+25 and a difference of 3 per cent. in the
upper half of Table I, refefring to the 3o level. In this example, the ratio of the difference
d (= 3 per cent.) to P{= 25 per cent.) is 12: 100, so that the proportionate difference so
defined 18 12 per gent The relevant entry of our table therefore tells us that equal Sal}lples
have to be as Jarge’as 3750 to validate a proportionate differcnce of 12 per cent. as real, if our
criterion of validity is the 3o level.

The table shown here does not explicitly answer a question of the type: how farge must
our sample be to detect a difference at least as great as x per cent. ? ‘We are sometimes ab}e to
simplify the statement of the problem, inasmuch as we commonly test a new treatment with a
proportionate response score of g, based on & individuals, agatnst a background of much more
cxtensive information concerning some pre-existing treatment to which we can ascribe a
proportipnate response score f, referable to a very large san}ple. In that case, the confidence
range of our cstimate p, will be trivial, and we are entitled to fall back on the method of
401-4.02. Accordingly, we postulate that p, is an exact estimate of p, the corresponding
parameter of the putative common universe. 1f our figures suggest that the new treatment 1
more efficacious, and we wish to ascertain how large a sample of individuals subjected to it would
suffice to validate a differcnce as large as 3 per cent., we thus assume that the difference

(p, — p) = 003, p, being the only unknown quantity.
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TABLE 1
Minimum number of Cases requisite to confer Significance at the 3o fevel
Va;: of Percentage Difference d = 100 (p, — #,).

1 2 3 4 5 6 7 s | o 10 ! 13
o1 | sz — | — | — | — N R e _ _
002 | 3528 | 882 | 392 | — | — | — | — | — || .i_ T
008 | 5238 | 1309 s82 | — | — _ | = - — I
004 | 6912 | 1728 | 7e8 | 432 | 276 | 192 | 141 | — — e _' —
0-03 | 8550 [ 2137 | 950 | 534 | 342 | 237 | 174 | 134 jo%ﬁ L
010 | 16200 | 4050 | 1800 | 1012 | 648 | 450 | 331 | 233 200 | ez, 72
015 | 22950 | 5738 | 2550 | 1434 | ®18 | 837 | 468 \3:,9 283 | 230 | 102
020 | 28800 | 7200 | 3200 | 1800 | 1152 | 800 588 \g 150 | 356 | 28y | 128
025 | 33750 | 8438 | 3750 | 2108 | 1350 93}1.\\"%}\3&» 527 | 417 | 338 | 130
0:30 | 37800 | 9450 | 4200 | 2363 | 1512 | 1050%| 771 | 591 | 487 | 378 ' 188
0-35 ] 40950 | 10238 | 4550 | 2550 1638 137 | sa6 | 640 | 506 | 410 | 182
040 | 43200 | 10800 | 4800 | 2700 33}’2‘8: 1200 | 882 | 675 | 533 | 432 | 192
0-45 | 44550 | 11138 | 4950 278{ 1782 1237 | 909 | 696 | S50 | 446 | 198
0-50 | 45000 | 11250 | 5000 z\\'{su’s 1800 | 1250 | ©18 | 703 | 536 | 450 | 200

At the 24 level the sifnple value p,
fiducial boundary : N\
O
N 2Vp,g, + b= 2V (1 — py) = b

O
Instead of k‘mg that our estimate p,

that the quantity defined by the lower
ie.

may exceed its mean value by a quantity defined by the

should exceed p, as defined above, by 0-03, we now ask
fiducial limit specified above should satisfy this condition,

L =2V T =3) 8] — p = 003,

In doing 80, we here assume that the value of & and P, 1s such that the fiducial will coincide very
closely with the confidence limits. The student should be able to adapt the preceding argument
to the requirements of the more refined and logically more satisfactory procedure of 5.05.

The foregoing assumption that P.(= P) is subject to no appreciable sampling error is not
essential. We can, in fact, proceed on the assumption that p, and p, are estimates each subject
to errors of sampling. Within this more general framework, we may then suppose for illustra-
tive purposes that : (@) a difference less than 5 per cent. in favour of a new treatment is of no
operational interes ; () that the pre-existing procedure guarantees 60 per cent. success, An
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TABLE 1—Continued
Fiducial Limits (3¢ and 2¢) on differences of a Specified Magnitude at the 2o level

’glue of .
Dan Percentage Difference d = 100 (pg — £3)-
ah-
1 2 3 4 5 6 7 8 9 10 15
Gt 792 — — — — —_ — — — — —

0-02 1568 302 174 —_ — — — — — — —

G-03 2328 582 2539 1486 63 — — — — — —

(04 3072 768 341 192 123 85 63 —_ — N —

(03 3800 850 422 238 152 106 75 59 47,.\‘\— —

014 7200 | 1800 800 450 285 200 147 113 . 89 72 32

015 0§ 10200 | 2550 | 1133 | 638 | 408 | 283 | 208 1595h 126 | 102 45

0840 12800 | 3200 1422 800 512 356 261 (S 2&} 158 128 57

(-25 15000 | 3750 1667 938 GO0 417 :}Q@ )l 234 185 150 67

G-30 18800 | 4200 1867 1050 672 487N ’>343 263 207 168 75

035 1§ 13200 | 4550 | 2022 | 1138 | 728 | JS067 | 371 284 225 182 81

G40 19200 | 4800 | 2133 | 1200 768" 533 302 300 237 192 85

0-43 19800 | 4850 | 2200 1238 |~ ';792 550 404 300 244 198 88

800 556 403 313 247 200 89

0-50 | 20000 | 5000 { 2222 | 1260

AN

actual difference of 0-03, sifghiﬁes that the new treatment sample confers 65 per cent. success,
so that for equal saniples p,,(= 0-625) is the mean of 60 per cent. and 65 per cent. If
we calculate » for p =% 0°625 and d = 0-05 at the agrecd significance level (e.g. o), we know
how large 7 musg.be'in order that an observed difference of 5 per cent. would be indicative
of the existegéeref a real difference however small. Evidently therefore 7 would have to be
much greater%én this, if the end in view were t0 validate the existence of a difference not less
than 5 per cent.

For a given value of  we can assign how small the proportionate value of d, as defined
above, must be, if we wish to establish the conclusion last stated. If the samples are of equal
size, so that p_ = 1(p, + p,) the proportionate value of d, subject to the understanding that

P < 05 is given by

d __ PP
d = =A% =" . . . . . (iid)
i Pab %(Pa +Pb)

At the significance level o, our criterion of the existence of a real difference is

d?k.c‘;.
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A difference exactly ko, would on this showing be real, but it might prove to be of trivial mag-
nitude in a long run of trials. To say that a real difference as great as x exists is therefore to
say that it excceds ko, by that amount. Accordingly, the criterton of the real cvistence of g
difference at least as great as x is

[

} h(}'d —r[_ X . . . . . f (iv}

In this equation we know x and 4, also

?Pab(l e pab)

2 _
% = a
d = dIJ ‘ Pab‘
Hence (iv) becomes
dD 'pab > X _I'. ;3\/2.?)(:1;(1 - pab) - a ' N - ) (V)

For purposes of tabulation, we can specify particular values of 4, in (v), Chi general, experience
permits us to assign a good estimate of p_, from which p_, is obtainable'hy fecourse to (1ii) above.

In this context we assume that p, is less than 0-5 as in Tablg I and henee Iess than Topr
Otherwise we define d as the ratio of d to 9, the smaller of the gwe complementary parameters.
The reader may ask why some cells in Table 1 have no-Caffies. Since we assume that
a=7r= b, our pooled estimate p,, must be the mean valdédf p, and p,, i.e. 2p, = {p, + p,)
Since d = (p, — p,); \\

2, —d 2‘2*&:

I—_Ienc.e Zby, — d must be positive, and any estimate’of r inconsistent with this necessary condi-
tion 18 inadmissible. For instance, when P o3 0-01, no difference as great as, or greater than,
2 per cent. could arise within the scope ofithe procedure outlined. -

The importance of this considegatiéﬁ arises from the circumstance which makes it
unnecessary to extend the p values of\the table beyond the 50 per cent. level, It is immaterial
whether we score the result of a therapeutic trial in terms of cures or failures. If p, = 41 per
cent., g, = 59 per cent., and if}h\: 47 per cent., g, == 53 per cent., so that

‘\ (Pb _"Pa) =006 = (ga - gb)

In short, the diﬁ'erenqeis\numerz'mﬂy identical, whether referable to the proportion of successes
or to the proportiopof failures. Tt is therefore immaterial whether we label successes by p or
byg=(1- P)}f .:and what is applicable to values of p in Table 1 is therefore applicable to
1—p, eg. entiigs for p = 0-99 would be the same as for p = 0-01.

507 SIGNIFICANCE, SYMMETRY AND SKEWNESS

Sal;‘l;’ ﬁ(;:'egcil}ilrigbtre.atmept of the conﬁden?e range proceeds from the assumption that th-e
Stag}; tOga x;mi utions involved are fippr.oxu_nately normal. It is therefore appropriate at this
siage ¢ distriburgo (ntr;umstances .whlch justify such an assumption. We have seen that the
tho ountabutic 1;;1)1 a .t:lxﬁgotmc Taw score or proportionate score is a good apRrgx1mat10_f1 to
it e e e oform W1stogram when 7, the size of the sample, is fairly large in comparison
that » is M ti D- We can express the fact that M, the mean raw score, is 7p by saying
mes the reciprocal of p. Tn other words, the absolute value of M is a measure of

whathe mean by fairly large in this context. ’
w haﬁed:ll:ewagg tl.le normal equation as Fhe limit of the exact binomial expression in 3.08-3.05,
¥ glven cursory consideration to the geometirical meaning of the statement that M
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is fairly large. The closcness of the approximation depends on the approach to symmetry of the
histogram contour. 'The range of the histogram extends from x = 0 to & = 7, that of the normal
from (-~ M) =X= - o0 to (x — M) =X~ - the curve being symmetrical about
X—0, ic. x =M. Hence a convenient measure of the approach to symmetry is (Fig. 34)
what propertion of the total area of the histogram lies cutside the range defined by a raw score
x=0, ¥ —Mtox=2M X=+ M

We have scen that the Poisson series gives us a good approximation for the ordinates of the
binormial histogram, when 7, though itself large, is not large compared with the reciprocal of p;
and M is then small compared with the maximum value of x = r. If M is very small, the
Poisson histogram is itself very skew, like the corresponding exact distribution ; but the contour
of the histogram defined by the Poisson series (Fig. 58) becomes more symmetrical, approaching
the normal curve as we increase the value of M. Thus it is possible to'get a close-up view of
the issue stated above by a back door entrance, if we ask ourselves the question what fraction
of the total arca of the Poisson histogram lies putside the range x =0 tol= 2M, when we
assign o particular value to M and hence to the ratio of 7 to the recipro€al*of p?

G A00o0- \ :
THE\E’O[SSON DISTRIBUTION
9.\

-0 35000-

(c)M = 3

(d) M =6

2 B 145 6wl

Fic. 56. The Poisson Distribution closely approaches symmetry when the mean value of the raw score
distribution is 8.
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TABLE 2

Total Area of Poisson Histogram in the Range x = U ta x = 23/

Poisson Series. | Binomiat {r-= 1O,
Xx. M=1 M=2 M . 8. Af s :;‘._
3 — — 0-050 1148
—2 — 0135 0+ 199 s
-1 0-368 0-406 0-423 i o
0 0736 0-677 0-647 . (3}17 O
1 920 0-857 0-815 :';\' \".\;J-SIS
2 0.981) 0-847 0-916 ' 0-919
3 (0-996) (0-683) o-g(*\é‘(.‘ ’ cos |
4 (0-999) (0-985) {0-9’&3) (0953_1 _
5 — (0-999) & ¢ \ '(0 998} - (0-99?_)"“
6 — — (0-999) (0-999) o

The total area of the Poisson histogr?a;ﬁ{ is given (p. 136} by the following expression :

“”’g\(x,—l O

3 28
LAy =a @(1+M+M +M+ LM )
:.\" ley
~G
..;~.j\ + + (2M)
:”\:" 28+ 1 n{ﬁu+2
O +3_M( o +. . )
@M+ DT @M T 9
The area (.Sy) defined by the range » = 0 to x == 2M is therefore given by
SM—-E M(l 'M-—I— —|—M3. . +M_2M)
(2M) 1
glemf:?}’ how paint into this expression particular numerical values of M (= 4, 5, 6, 7, 10) as
42 8
8, = e i
17 (1 Rl YRR sr) 0-9786.
51(!

S“:e_s(l+5+§_?' gy

) 0-9864.
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— . 6‘2 612
Sszﬁ (176-{*—2—' PR 1'—'2—I)=09889.
72 714
— 7 il =0
S, = (1+7 TR _14[) 0-9943.
102 1020
— =10 - . . e
So=e¢ (1+10+2! C 201)—09984.

Thus the value M — 6 defines the condition that almost exactly 99 per cent. of the area of the
Poisson histogram lies in the hump about X = £ M. In other words, less than 1 per cent.
of the total area lies in the tail if # is more than 6 times the reciprocal of p and less than
0-2 per cent. if 7 is as much as ten times as great as the reciprocal of p. The accompanying
tables (2 and 8) will give the reader some insight into the discrepancies betweelf\Poisson and
normal approximations to skew binomial distributions. )

Qur preceding examination of the area of the binomial histogram withig'\the range x = Oto
x = 2M presupposes that the Poisson series gives a good fit for the reléyant value of M. We
shall now approach the issue more directly. Qur task will be to answer the following question :
how smal} is the sum (1 — Sy,) of the frequencies of the terms outgide the range » = Otox = 2M,
when a biromial is very skew ! ‘This sum is ! '

E=1t anr—:ﬁﬁs}: _ 3
(1=8S) = 3 Fo=o Fura = = " (i)
x=2M+1 «‘f‘“l : .

To answer the question last stated, we shall seck tolgxpress the series defined by (ii) as fractions
of the value y, assumes when x = 2M. We first hote that

Yos1 r! . " \})1;5-1(11"—&-1 . b_!.(i-ﬂp—bgb—f,
y @+ DI D! Lo
: o £ ) I
( _r—bp
.,.*.\>°“__ G+ ™
Similarly we derive O
lb—lp B —b—DF
Ve ST rmg T @Y he
O (r = D)@pt
AN S YeaeT= g T o 5+ Yo
O R R
By iteration thegefore o '
(?. - b)(a)Pﬂ
Yotres = (Wb)‘“’q“ + Vo
When b = 2, we therefore have R,
(r—2Myeps L GE)

Yoy = (M @) ¢ o
When p is small so that g~ 1, the value of the denominator in (i) is evidently greater than
(2M)?. We may write the numerator in the form
(r —2Myp . (r — 2M — Np.(r—2M—2)p... %04 factors
= (rp — 2Mp)(rp — QMp — pYrp — o2Mp —2p) + .+ - dil'tto
— (M — 2Mp)(M — 2Mp — PYM — 2Mp — 2p) . . - ditto
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—— Frequency Polygon of the Binomial

(09+ O-I)'oo: ¥ariance 9 and megn 10O

‘14 1 Normal Curve zamz vamance (9)
and mean {0}
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‘lo.
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*

Fi1g. 57. For mean score values of 10 the Poisson and I\To’::mnl distribution give about equally good correspondence
with the Binomja]’fo’r a sample of 100,

P&\

. . P\ PPy :
It is therefore evident that the nume\@g}r of (iii) is less than M=, Hence we may write

W@ Faee < gy e

»
#

¢\
S
By substitution in (i{), we therefore derive
NS aef=2M

\”‘} (1 — Sy) < yon > &

Gl

1
Yerr4a < 5a Yot

Now the expression under the su

mmation sign is a geometric progression, of which we know
from our schoolbooks that

Zz (3)e = 1.
Hence we conclude that
(1 — Su) < Yopg-

A. good approximation to y,, is possible when 7 is large by recourse to Stirling’s theorem (p. 48),
viz, -

V. e MM (y My 2

e == ou (QMPM+y om fo (r — My —2M+k pori2m 4
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TABLE 3

Raw score frequency for Distributions with @ Mean Value of 10 computed in accordance with : (a) the Poizson Series,

{b) the Terms of the Binomial for r = 100, (c) the Normal Gurve with the same Variance (o = 3) as the Terms of

{09 4- 0100, Note the Cumulative Frequencies cited for the Normal Distribution represent the sum of the
Ordinates cited as Individual Scove Frequencies (see Table 4).

Frequency of Individual Scores. Cumulative Frequency.

Score. Normal, RBinornial. Poissen. Score, Normal. Binomial. Poisson.
0 0-DO05 0-0000 (0-0000 0 0:0005 Q-0000 00000
1 0-00158 00003 00004 1 0-0020 0-0003 0004
2 0-0038 0-0016 1-0023 2 0058 00019 00027
3 -0087 0-0039 00078 3 0-0145 06078 {\  0-0103
4 0180 0-(159 G189 4 00325 0-0237 0-0262
5 0-0332 0-0339 0-0378 5 0-06857 0'0.5\7?5\ 00870
6 0-0547 00596 0-0631 ] 0-1204 0NT2 01301
7 0-0807 0-0889 0-0801 7 0-2011 . G:2081 2202
8 01065 0:1148 01126 8 03076 :‘~.’"0'32()9 0-3328
9 01258 21304 0-1251 9 0-4334 75 04513 0-4579

3] 1330 0-1319 01251 10 0-566:}"\'\ 05832 0-5830
11 01258 01199 0-1137 it 08922 3 0-7031 08967
12 0-1065 00988 0-09485 12 07987 0:801{9 0-7915
13 0-0807 0-0743 00729 13 s 0:8794 0-8762 0-8644
14 03547 00513 0-0521 14 ¢ {9341 09275 0-9165
15 00332 0-0327 0:0347 158/ \ 0-9673 9602 9512
16 00180 0193 0-0217 167 09853 0-9795 0-9729
17 00087 0-0106 00128 o 17 0-9940 0-9901 0-9857
18 0-0038 00054 00071 o0l8 09978 (r9955 0-9928
19 00015 0026 00037 S 19 0-9993 +b281 (9965
20 0-0005 0-0012 000194y | 20 -0958 (9993 (9984
21 0-0001 0-:0005 0-0009™ 21 0-9999 -9988 09993
20 0-(000 0-0002, 00004 22 0-5999 1-0000 0-9997
23 0-0000 0-0001 ) {03}002 23 0-5909 1-0000 0-9959
b
A\ N
” TABLE 4

\¥
For large values of 7, the ordz’mtﬁ'“of the normal curve approximately correspond to those of the corresponding
mid-points at the head of the.Coliimns of the binomial histogram, Hence their sum corresponds closely to the
curnulative frequency speci%e, by summation of successive terms of the binomial. T'o get the corresponding
area of the normal integr@INP is necessary to make the half interval adjustment of p. 114, The figures below
show : (a) the result ofsumming the ordinates of the normal curve (¢ = 3) as given in Table 3 ; (¥} the corre-
spoijding area of the integral with the appropriate half-interval correctior,
N

\ . Area of the Integral
Score Deviation, S:?igfrgﬁl:gfes with half—iflterval
Correction,
0 0-5664 0-5662
1 0-6922 0-6915
2 0-7987 7977
3 0-8794 0-8783
4 1-9341 0-5332
5 0:9673 (-9666
6 (0-9853 9849
7 0-9940 -9538
8 0-9978 0-9977
9 0-59993 0-9592
10 0-2998 0-9598
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st (r — My ¥
A ,
Vo, BMET MM (- QMR

\/T 1 (r— M)
S=NTM 2B —2My B

,‘I‘I r—2f
] ( 7 )

122311-1\/“_3}' (I 2;“14)"’2”-*-‘]‘

r
1 (1 pyit=
:2M+1,\/m'(1 _QP)f(l—sp;+;' N
When p is very small we therefore have ' '\:’\'
1 (-py O

P g (1 — 2y Y
On’ the foregoing assumption we may employ (i) of page 46, ]e\ 4
(1 '“'P)f ~ g =p M and (l _— 2{)1’ :"L,—BM_
PN

M

o = ———————
Vg 22M+1.\/7”7|I£~ J
Whence by (ii) RO
one!
1—8)<con® (v
( Jf) "':;22‘1!4—1'\/7}'_21/_{ . - ( )

The last expression does not depend on 2 but merely upon M == rp, on the assumption that 7
is large and p is small. If we put M 8 in (iv), we have
€M o 40343 DI+ — 81925 VD ~ 4:34,

o8 (1= 8y) < 0012,
If we put M = 10 in (iv), Wt{ha\?e

eﬂ%:gZOSZG; M+ — 9097152 : VM ~ 5605,
O s (1 — 8y < 0002,

-~ Within the ”{mriie{vork of our assumptions that r is very large and p very small, we therefore
derive d

) when}wi 6

=20

> y. > 0988,
(i) when M = 10 #=e
x="23

> v, > 0:998.
x=10

When 2 is in fact small 7pg ~1p = M, so that 6 = v/ == 2-45 when M = 6. So the area of
the histogram beyond the range x =12, X — 6 ~ 2-450 is about 1 per cent. of the whole.
When M = 10, less than 02 per cent. of the total area lies outside the range = 3o.  For values
of M greater than or equal to 10 and high values of 7 the normal curve will in fact give a better

description of a skew binomial than does the Poisson distribution, and for most practical put-
poses we are on safe ground when we use it,



CHAPTER 6

INTERLUDE ON THE METHOD OF MOMENTS

6.01 TeE METHOD 0F MOMENTS

Tx Chapter 3 we have examined the possibility of finding approximate expressions for the
frequency of raw scores, proportional scores and the deviations of either from their mean values
in the domain of taxonomical (p. 194) statistics. Our enquiry embraced two types of sampling :
(a) with replacement in accordance with the expansion of (p +-¢)"; (&) without replacement in
accordance with the expansion of (ng + #p)("? = . In general, the objective ¢fsuch analysis
is to sidestep laborious computation by recourse to tables of appropriate functions. Suitability
for tabulation is necessarily a criterion of what is in fact appropriate in this cafitext ; but there
is another which is equally relevant to the end in view.  \

Distributions exactly defined by the terms of either type of binafitig] referred to above do
not include all kinds of sampling distributions on which statisticalranalysis relies ; but two
classes of related functions for which tables exist enter into apffbXimate expressions for those
of a very large class which includes them. ‘These functions—tlie’Gamma and the Beta functions
—arc the central theme of this chapter. In a derivative forfiiwe have already made the acquaint-
ance of each. For the score deviation (X) distribution’ defined by the exact binomial (p + )"
we obtained (pp. 119-120) in Chapter 3 two approxifpate expressions from each of which the
normal distribution falls out as a special case wher is large. The first of these we developed
by transforming into a differential equation an gxact difference equation of the form

A 1) Ax.

o
The corresponding differential equa\tihn is

A rp ( X) e ' .
oo ~= .1 1+-=~]——+4+K. . . . . 1
"\.',\dX . og |1+ » 7 -+ (i)
The solution of this 1&% ""
&l M
A\ _x X\7 .
) Y=Y,.¢ 4(1—]——-)q . . . . . (i)
\ \‘ - M .
For an element of area dA, we therefore have
M
: X X\7
dA=Y.dX=7VY,.¢ E(I—PE)q.dX' . . . . (B

The replacement of X by a linear function z of X merely involves a shift of origin and change
of scale. If we put X = (gz — M)
X gz X M
dX:g.dz, (1 +ﬂ'—4.) -—M, —g—'z"""—é‘,
M
g

_ —e Y (B
dAfYD.g.exp( z—}-};!).(M) . dz.
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To simplify this we shall put (M <+ ¢) = (a — 1),
s dA =Yy, 00 MY L e ey
If C is a constant equal to ¥, . ¢* . M1~% . &1
dA=C.e*" . 2" . dx . . : : . {iv)

Now the area under the whole curve is unity. By putting ¥ = 0 in (ii) we {ind t’hat the limits
of the curve are X = — M and X = 0. When X == 0, 2 = o0, and when X = — M, we

have (1 + %’) = ( = z, so that )

o _X X\7 ® . e \
Yo_[—me f(l—i-ﬂ—d,) dX:l:CLe .2 1.a’z,\

L\

0 ,\'“
.é:jw.za-:.dz. SO W
0 AN

Being a definite integral (v} is a function of « alone, called theg Qamrna fgnctimr, ; and tables of
this function are available. It is customary to write it as, I{g), so that (iv) becones

1 - y \.‘ : ('Vi)
o~ ety 19 . . . ‘ .
dA_P(a).e‘ zuz\ £
If Y=flz)and K~1 — I'(a), we speak of it as a Gamma variate when
fRASK. om0 ()

A second class of functions mentigned in the first paragraph has emerged i connection
with the central difference equation (x¥i1) in 3.04 corresponding to (i) above and ab artf?ppfi?;‘:l;
mate description of the hyperge, Q’eti‘ic series, i.e. successive terms of ( S+ )7+ u', whic
defines the non-replacement distribution in accordance with (xvi) and (xix) of _3-09- To obt.aun
the latter, we made the assurpption that the sample extracted from the universe is a small fract{oﬁ
of it. 'The removal of thi¥\fimitation, as we shall later see, suggests a general pattern whic d
includes as special cases all the distributions of Chapter 3, and leads to an empirical metho ¢
of finding a curve stitable for the description of sampling distributions. In the unfolding o
this pattern, we encotinter a class of parameters (i.e. constants) which have a special descriptive
value ; and ou;-.fi:é’c task will be to define them. )

For degeriptive purposes it is not enough that a distribution function * should be convenient
with a viewMo tabulation alone. To fulfil the end in view, its parameters should be easily
calculable from the distribution. They should also help us to visualise its character ; and hence
to choose a descriptive function of the right sort. It is this circumstance which endows the
class of parameters called momenis with special interest,

When we write it as below, our expression for the normal distribution involves two such
constants, the mean (M) and the varignce (V):

_ 1 — {x — M)2
IV gy
of the distribution is in fact the wei

ghted arithmetic average of the scores, the variance
weighted average of the squares o,

f the corresponding score deviations. The corre-

¢ Contemporary writers commonly use this term for the integral of the frequency function.

The mean
being the
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sponding weighted average (V,) of the squares of the scores themselves has a simple relation to

the mean and to the variance, viz. :
V=V,—M* . . . . . . (viii)

The constants M, ¥, and ¥ which suffice to define a particular type of sampling distribution
suggest the exploration of a large class of indices, called momenis by analogy with corresponding
functions in mechanics.* We shall henceforth speak respectively of M and ¥V, as the first and
cecond zero moments of a distribution, and shall denote them by the symbols g, and g, The
weighted average of the deviations or first moment about the mean is mecessarily zero, 'The
average of the square deviations, i.e. the variance, we shall call in this context the second mean
moment, henceforth denoted m,. We may set out these definitions thus for a score range from
Jtor: A~

¥

r . L 4
p=2y. 8 =M m=2 )= 2 Y. X=04
¢ "

—# 2N
z L4 F— i . N
P2=zy'xa=vai s ZZy(x_p‘l)3= 2 K:’XZZV.
G o N

A\
It is important to recognise that 7 is not the same ag afi;.\l‘ndcx of dispersion called the
wean deviation (4). The latter is the weighted average de{igtion regardless of sign, i.e.
Fe N\

f—fi r & ® .
ZY.1X|=Zy11‘?c:\—p1] . . ; . . (ix)
—n 0 W
By analogy we can define moments based on vIuéher powers, €.g.
? r—p r r—im
pa= . x; my= 3 V. X3 pa=Dy.aty my= > V. X%
1] — p 0 —in

More generally, we may write for Q{I;fh moments, about zero and about the mean respectively :

) f— i
C\'p.;:Zy.x"; m o=y ¥.X* . . . . &)
{ Q

—
In conformity with Ll'%'s:y}xbolism

\\ p.,:%y:l.
When 7 is in@ﬁﬁ.itely large and « (hence also X) increases T by unit steps (Ax = 1 = AX) we
may write (x) In the approximate form

o
,u.kzj y.5* . dx; mkzj
1}

* The moment of force about a point is the product of the force and the perpendicular distanc!s of its appI.ication
from the same point. We define the centre of gravity (centroid) of a system of particles as the point about which the
algebraic sum of their moments w.r.t. gravitational attraction is zero. The moment of inertia involves the second power
of the distance of such a system of particles. From a formal viewpoint, the first mean moment is thus comparable
to the centroid and the variance to the moment of inertia about the centroid.
+ Otherwise we have to make the appropriate scalar change of (vii) in 4.08 to obtain‘ the _correct form of the
integrand. For simplicity we assume throughout this chapter that the scale of x anfi X is unity. If not, we must
replace the frequency y by the integrand F(x) in conformity with the scalar reduction

y = F(x)Ax.
For instance, Flxy = 3y if Ax = 0'8.

x 3
V.X*. dX . . . . (xi)
20
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In general the kth zero moment is the mean or expected value of the kth

power of a score whoss
range is positive. We may write it :

pr == E{(x*) : : . : : o (xii)

For our present purpose the special interest of these indices resides in the
the contour of a distribution. If 2 sampling distribution has onl ¥ one mode,
(crest) value of y, two properties with due regard to 1ts range sulfice 1w indicate its shape :
(@) whether it is more or less skew, i.e. asymmetrical about the mean as origin ; (#) whether it
is more or less flat. Odd moments other than the first have @ particular interest with respect
to (4). The only one we shall use is m,, the mean cube deviation. Like any hiciwer Ath mean
moment in which £ is an odd number, the third mean moment may he positive, negative or zero,
It will be zero if negative and positive cube deviations of equal magnitude and¢tually frequent,
as must be true of a symmetrical curve. It will be pusitive or ncgativ(':,sac‘cm'din_:: s positive
are more or less numerous than negative. An excess of onc or the othensegnifics that the dis-
tribution is skew. \ .

Even mean moments are neces

it relevance to
Le. only one maximum

sarily positive, since cven power$ob negative deviations must
themselves be positive. Hence they can tell us nothing about the'symmetry of a curve.  Their
interest resides in what they can tell us about its Satness. "Rlrisa high value of the ratio ", 1 e
commonly denoted 8,, signifies a steeper and a low valyue sigmfies a flatter contour of 2 unimodal
distribution. 'This assertion is not very obvious, and th& &tudent may find it useful to explore
its numerical implications before seekmg an algebrdiC rationale.  Accordin gly, we give below
examples of a 5-class symmetrical universe of score walues 1,2, 34,5 In virtuc of symmetry
the mean is 8 and the deviations are therefore 232~ 1,0, 4 1, + 2. The first is rectangular,

being as flat as may be, and those that followre successively steeper, as a frechand sketch of
their histograms will suffice to disclose SR\ B

'(c-z)1:1:1:1:1;..‘Sm2=l5°-; my=2t, g =17
) 1:2:3:9 \]S my =3, m, =38, g 095
(6)1:2:‘4{;"2}1; my=1%; my == 38, B> =25
(d) 1 14%10:4:1; imy = 30 my= 20 8. = 3-125.

The constants m,,

! s a0d/m, whose definition involves 1, thus suffice to convey a clear picture
of a unimodal dist

tibution, if we can define its range ; and an expression involving all four
; fore adaptable for the description of such distributions. With due regard to
i ibutions which are unimodal, Beta or
) ing the first four mean moments as their constants therefore have
special advai}tages. Such is the rationale of the method of moments for fitting a continuous
curve to a discrete frequency distribution. Jts exposition calls for an interlude to provide the
student with opportunity for revision of, or for first acquaintance with, some relevant applications
of infinitesimal calculus, Sections here included with that end in view will also provide occasion
hout proof or without illustration.
nt will find it helpful to gain some preliminary
Both for purposes of algebraic manipulation_anfl
dispersion indices of empirical distributions, 1t 18
em from zero moments or wice versa. One relation

Before proceeding further, the stude
practice in the notation of moments.
for computation of mean moments as
often convenient to be able to detive th
of this sort is already familiar, e

V= Vu-—' Mz gy My = py — #% . . . . (Xiii)
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The method employed in the derivation of this relation is quite general. Thus we have

¥

Yo — pq)® = D y(%® — Bugx® + Budx — i)

ng =
\]

— By - iy - Bpd . —
Bup 2 . . (xi)

>
1]
%;V X — 3#1%3’ &% 3#?%3} cx— p?%y
F"s. o
3

By substitution from (xiii) we may write this in the form

e = #ly + 3}.141 g + ‘u% - . . . .. "\ - - (XV)
. . - . : .. ) .\.
In the same way we derive o A,
7NN “ .
my= py— dpaps + 823 e — 3 . o M . (x¥)
. (" R
Y

EXERCISE 601
1, TFind the first four zero and mean moments of thpﬁPbi’és’on distribution’ of p. 136.

8, The cards of 2 pack being numbered consecutively from 0 to #n, determine by appropriate
formule for cxact summation (Ex. 8 on p. 23) the fitst Tour zero moments (1, — 1q) and hence the first
four mean moments (m; — m,) of the player’s sggre w.r.t. choice of one card only.

3. For the re&takguldr distribution: si)e’(;iﬁéd in 2 ab_ové, show by integration that for large values

of n

(), !ﬁzx\ approaches a limit of % n?;

_(B).'m, approaches a limit of 5 n%

4. For the 3-class nniuééé.é“of gcore values — 1, 0 and - 1 with freﬁuencies 1:4:1 determine
the value of B, and use thg\éhéssboard method to find that of 8, for 2-fold and 3-fold samples.
~ :

5. Compare tl\é%eéﬁlts of 2 and 3. If B, = (m, = m2) is an index of flatness of a distribution,
what are its exact anglimiting values for the rectangular distribution ? .
N\®Y .
6. In ‘ECd‘réw of 7 cards with replacement, the player who gets x hearts scores 3% points, Write
down a general expression for his mean heart score so defined.

7. If he scores 27 points, find an expression for his mean score as 4 finite difference series.
8. If he scores ¢ points, develop an expression for his mean score’ by the exponential series.

9, What relation exists between the cocfficients of (* #l) in the series of 7 above and the
moments of the raw score distribution of the player ?

10. By récourse to (vii), (xiv} and (xvi} above find the second, third and fourth zero moments and
mesn moments of the distribution of the

(i} score deviation difference w.r.t. 4-fold and 3-fold samples from a 2-class universle ;
(ii} proportionate score difference w.r.t. 3-fold and 5-fold samples from a 2-class universe.
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6.02 INTEGRATION BY SERIES AND INTEGRATION BY PARrTs

At the outset, the student who hopes to master the elements of curve fitting by moments
should be gu fait with methods of integration. The aim of this section is to oive the student
who is not in training an opportunity to revise such methods, more particularly with a view to
study of the properties of the Gamma and Beta functions. These two functions have a close
connection with the factorial numbers which play so prominent a role in the algebra of choice
and chance, and it would be redundant to remind the student of this book of the advantages of
using the approximate method of the infinitesimal caleulus to sidestep the laborious computations
entailed by their exact evaluation. We have already made the acquaintance of the approximate
formula of Stirling (1.09) for computation of factorials of large numbers ; and it will also be

fitting to examine its rationale in this context. N\
There are four principal devices for reducing an integral to a standard pattern available
for reference, if not already committed to memory : )

"\
\

(@) Trigonometrical substitution such as ~
x=rsind; Vr? — 2% =rcos &;:’f
(8) resolution into partial fractions, a device to which \ie"have had recourse already for
solution of differential equations in Chapter 3 ;
(c} expansion of the integrand as an infinite power Series ;

(d) resolution of the integrand into factors with(3 view to integration by parts,

The last two are specially relevant to the is,suéé.dealt with in this chapter.

_ Integration by Series. By means of Maglaurin’s theorem (1.09) it is possible to cxpand a con-
tnuous function of x as an infinite series of powers of x with constant coefficients. We can
then integrate term by term in accorddnce with the following pattern :

§f@ds = (14, + 458 4 + A5 . . ) dr
= IAod.P:\%:-"jﬁl Lx.dx IAE Cxtode + IA3 .xtodx L. et
= AGE+ 34 xt + 34y 4% + 34, 00 . L ete, R ¢

If the resulting serief;:ta'. tapidly convergent, this device offers a convenient method of computing

a numeflcal resulj; 10 any required order of precision, As an example, we may consider the
normal integrat <™
/7N
I\

y Ie—*"' . de.

 Vex
In this case, we recall the standard expansion :
_ at a? at ab
ga__l_i—a—}--—z—]-l—-é—‘—i—zl—f-gi P it
€* et B (8 ctt
2T TR T dmp O
1
y= Voo Udc -— %Iczdc +- -}jc‘dc — Zlgjﬁdc + —g,-%zjcsdc — ‘gglrjcw e . ]
1

et~ _

_ ,«_-3 (,‘5 c".' 69 cll
— =L — = Nn T — FAEA T T
’\/217[ 6 +40 336 +3456 42240 © ° ]



INTERLUDE ON THE METHOD OF MOMENTS 235

Evidently, the series is rapidly convergent for values of ¢ < 1. As an illustration of its use for
computation of a table of the probability integral, we may consider the value ¢ = 0-675
(X == 0-675¢), which bounds almost exactly half the area of the normal curve. Our problem is

then to evaluate

2 0-875 1o

A= Vo L e de

LR B 0675
= 07979 . .. [c—g —1—16——5-% - :I

The first six terms suffice to fix the first four significant figures. For terms inside the brackets

we then have

a

PosITIVE NEGATIVE ~
¢ =06750; ¢ =1 —06750  2=03075; 6 «=00513
5 —014105 =40 —=00035 ¢ =00638; o 336 = 00002
¢ — 00290 ; ¢ = 3456 = 00000 ¢ =00132; o <+ 42240 = 0-0000

"

"TOTALS 0-6785 O 0-0515
N
Hence we may put \/
A = 07978 . . . (0-6785 — 0-0515) =(07978)(0-6270)
= 0-5002 P\
Since we have already had occasion to remark on the:r;i’g:niﬁcance ratio 0-875¢, commenly desig-
nated the probable error of the distribution, ng.;ﬁore need be said about if, except that it is
one to remember. "T'wo other examples of series integration are of general interest.

Example 1. Tt is possible to derive the'lagarithmic series by consideration of the properties

of the integral R

By direct division we can write

&
N+
o, &/

This series is converggs\kt; fx<l Subject to this restriction we can write

iogL\I\:}fﬁ}:I” d r(1~—x+x2—x3+x"...)dx,

=1—wn-+a?—2x*+as..

) ol+x: &
N x? X &t " nt nt nt 8
. log(l+n)=|:x-—-§ —}"g—‘—z P .]0=ﬂ—§ —{—‘5—-4——1—-5',3“-0

Example 2. 'The breakdown of another standard integral leads to Gregory’s series for a
numerical value for o

' 1
[1 dx =[tm—1x] ;—_I(I—x2+x4—x°+x3...)d.x,
. 1]

ol -+ x2 0
1 x5 &7 1
[tan 1x]0= I:x——B- +—5-—--7 4. .. :Io.

Since tan () = 1 and tan 0 = 0, tan~1 1 = Lz and tan~10 = 0, so that
r=41—-%+%2—-%+%...1
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The legitimate use of integration by series presupposes that the series involved are convergent, i.e,
that the sum of the terms can never exceed a limiting value, however many terms we include.  Its use-
fulness also presupposes that the derived series converges rapidly, i.e. that the sum of very few initial
terms approaches closely to such a limit. The recognition of a convergent series 1s o luss esoteric issue
than one might infer from the space devoted to the topic in mathematical treatises.  Ior we make the

1
acquaintance of such a series when we learn to identify as the fraction g, the unfimitel serics

L )
1 1 1 1

15 +.@—|—1000—{—m LLowoetes = LD L L L ete.

If every term after some finite number of terms of one serics is positive und less thun the term of equiva-
lent rank in a serics which we know to be convergent, it goes without saying that thgarns of 2i its terms
cannot exceed a fixed value. This is evidently true of the serics whose termy IR reciprocals of the

o . .1 . &ND :
factorials, since successive terms after the tenth (1.&. 101 decrease by multiphfing’the dennminator by a
. N

factor which is greater than 10 itself and hence diminish more rapidlgstlian succcesive terms of the
series 0-1. A power series of ¥ whose coefficicnts are less than unity st also fall oil ai a certain level
more rapidly than a G.P. whose common ratio is x, when x itsclf isdoss than unity,  Comumonly, there-
fore, we can apply some such yardstick as a recurring decimal or tie ri:ciprocals of the factorials to decide
whether a series is or is not convergent. If the signs of the temmsof a scries alternate and their numerical
values decline consistently, we can replace it by one \thoqg'\férms arc all positive by pairing otf adjacent
terms, and apply the same criterion to the series so congtituted, since the fact of pairing off the terms in
this way does not affect the summation. QO

% % R B ox % %
~ Integration by Parts. Instructiong\for integration by parts as given in many clementary
text-books on the infinitesimal calgulus’ leave more than is necessary to the ingenuity of the
student not pgified with great fﬁv{“i’f&r for manipulating symbols. The following schema seis
forth the necessary steps in a way which minimises the difficulties. We start with the standard
expression for the differentiation of a product, iz, :

o \y

& d(wz) = wdz + zdw . : : . : . (1)
Wh O
ence we have .~'§ -
XN wy = dez + jzdw . . : : : . (i)
If we put (0
dw=y.ds; T--jy.dx; ﬂ:z:z‘\.y.dx ‘ : : - @)
From (iv) we have
[z cdw = [yz dx . . ; . X ) . @

jw.dz .. jdz(fy.dx) -:—.._jgz(jy.dx)dx A

By substituti i i) in (iii :
4 ution. of (iv)-(vi) in (iff) we have a general pattern (vil) below for memorisation :

: zj}rdx = jj%(jy . dx)dx -1 J}‘z e,
j} dx—g j v | (?) [ j v dx] dx S (i)

ax
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To usc (vii) with profit, everything depends on choosing which factor of the product to label
as z or y for differentiation and integration respectively.

jx Lcosx . dre = xj cos x dx — j‘jfU cos X dx] dx
A

:xsinx—jsinxdx

Example 3.

= xs8in & + cos x
(Check by differentiation.)

Example 4.

jlogx.dx-——!‘l.logxdx . N\

A\
= log xjdx — jd i;f dex] dx X O
=x10gx#j"1.x.dx "‘ ’

x "\
= x log x — & \4
N (Check as before.}
Example 5. *\ )

jsin2x.dx = Isinx.sinx.@xﬁ’—sinxcosx-|~Scosaxdx
— — sin & . COBW I (1 — sin? &) dx
= —sinpcos® + X — I sin? x dx,
) LN
S sin?x . dx = «—a sin & . €08 X).

€N % % % * # *

S/ . .
In anticipation of whgt follows (6.04) we may use the method of integration by parts to
obtain a very coarse appteximation for factorials of large numbers, noting first that

..}.}(J\gnl =logl +log2 +logd . .. log(n — 1) +log=
\' ¥ - :

<§ 7 = > logr.

=1

As a rough and ready estimate, we may treat the expression on the right as an integral in .accord—
ance with the method of summation explained in 1.10 with due regard to the cotrect limits of

integration :
o+

; :
logr.dr . . . . »  {viii)

i log r ,._.___,.[
r=1
Hence, in accordance with Example 4 above,

r=n nt¥
> legr= [rlog:r — r]
r=1 H

) log ) — (- E) — flogk+d

i
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(n + 4y *i
oo dog nl >~ log —sst— — 1,
8 NS
Io nl o~
Y T
nl

e h

T SETERY, S
wnle(a+ B Vo + 1. e

The student will find it instructive to compare results obtained by the above and hy Stirling’s
formula w.r.t. 10! and 12!, The result shown above is not very good for a rengon explained in
1.10, namely that the function is rapidly increasing throughout the whole ranges” Iy this method
we can thus get at best a gross approximation for nl. So we need not be f: ;\(é*t.i;ﬁ:_] us about neglect-
ing small terms in the search for a clue to a better one. 'T'hus } log dus neglipiie, when # is
large, and we are entitled to try out what happens if we put N

(n + 3) log (n + 3) = (n + }) logm”
We then obtain O
al et emn =y n\"\e‘"

This result is not even 50 per cent. correct, but it his'a highly suggestive arithmctical property
which leads to one demonstration of Stirling’s theorem cited in 1-09. For large values of n
the expression on the extreme right above becemes almost exactly equal to z! if we multiply it

by a constant factor which turns out to be ¥2x.

O
XNEXERCISE 6.02
1. Obtain a series for log (\'1‘ »<'x) by the method of Example 1 in 6.02.

+ x

.t\” ,
2. By the same m%h“?d’obtain a series for log ! and check the result by recourse to the series

1—x
for log (1 + x) and Lo’g:a — x} on p. 47,
¢ \' 'Y
3. Speci&‘ power series for sin x and cos x by Maclaurin’s method (p. 47}, and hence show that

Icosx.dx=sinx and jshlx.dx=——cosx.

4. Evaluate the following :

z . 3
S.x .Cos x . dx; Ix.smx.dx; _[xs.cosx.dx;

. a2
jcos“x.dx; jsmsx.dx; .[ sin? x . dx.

o

B. Find the value of
Sx”.logx.dx; K(l—x}"‘.xs.dx; je*”.x’.dx; Ie‘“.xs.dx;

- & 3 . S H
Sx.cosx.dx, Sx.smx.dx, jsmx.cosx.dx; Ismx.coss.x.dx-
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8. Obtain comparable expressions by recourse to (vii} in 6-02 for each pair of the following
integrals, and use the combined result to evaluate each:

6] _(e”.cosx.dx and Je“'.sinx.dx,

(if) Ie“”.cosbx.dx and Ke‘”.sinbx.dx.

%, Show that

@ Ixm (1 — =2 dy= o am il — =t —_T?Ixm-l(l e dn
e A e e )
8. Use the results of (7) to show that R O
jx"‘-i(l — xp-t.dy = ! P Ul Al +11)xm+‘(1 ) i
P oy pn O o e
and hence that N

F={$--1) (n . 1)(

— 1)ie
(m—]-r)(f-i-ll amt f(l x)fwr 1+ M_._J‘xm-i-p-—l(l —_ x)ﬂ..,;_l dx.
r=1

jxm_l(l_x)nul - dw= (m + p—1)1»

<N
RN

9. Show that o8
@ [eman—td = — w208 4 (1 —2) fem w02 dn

(8 Jeran-2de = —@t=3o-r 4 (n—3) [e~T.armt.du.
\\...
10. Use the results of the last example to show that
S =%t gy — ,__xn—l e—:u (ﬁ__, I)xn 2 Le—7 — (ﬂ — 1)(”_ 2)xﬂ 3 _e—?

\\\ Fr—Dn—2m—3) fer. -t dn.
11, Show that \ "
Sxt  6lat
3
\ secx—-l-i- + —|-720..
246 174

ta‘”‘=”_"§+15*?3ﬁ' :

~ 12. Integrate the following by the method of parts:
Isin"‘xgix; I cos® x dx.

Also show by recourse to Maclaurin’s series that

¢% = cos & -+ fsin &,
hence that
gr = 1,
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6.03 Tae WaLrLis ProDUCT FOR =

As an illustration of the use of integration by parts leading to continued products as in
Ex. 810 of 6.02, a method of deriving an cxpression for = due to Wallis, a con-
temporary of Newton, is instructive and also necessary for subsequent exannnation of Stirling’s
formula for factorials of large numbers. It involves the evaluation of the detinite integral :

72 2 .
J sin™x . de = sinx,sin™ lx, dy
¢ 0

. ETE L) . . .
= |sin®"tx.cosx| + {m —Dysin™-2x . cos® vl d
0

L]
O\
Since sin {0} = 0, sin™ 1 (0) and cos =/2 = 0 @
¢\
aE w2 NS ©
j sin™x dy = J (m— Dysin™ 2x . cos?*x.dv W
0 0 Y

il AN
= {m — l)j sin™= 2 a(1 — sipdiydy
0 v

=2 2

5 4

. AY; .
sin™=*x gV (m — 1) | sin®ua.dy,
\N

= (m — 1]j

0 i

a2 . N\NY Af2
. mj sin™x . dx="(m — 1) J sin™"2x ., dy

[ L 1)
i SNV g
. sin™a Y dx = J sin ™= 2 x . dx.
o o m Jo
By the same token : o i"‘y\
=2 L\ m— 3
sii™r2x . dx=—— | sin"tx.dx
oy ™ m—2je
AN
2,.’ o
a5 . m— D(m — 3) [P .
:"\;FQ sin™x ., dx = (—n)(—-—) sin™ fx . dx.
N\ m{m — 2) 0

More generally R\

sinm= 2 %, dy. . (1)
{

I"”sinm ol (=D —8)m—5) .. n—2p +3)m—2p + 1).[
© N mm—2m—4) ... (m—2p+Hm—2p +2)

If 1 is an even integer, we can replace it by 2#, and (i) becomes

rmsin?“ ¢ iy G = D2n—3)(2n—5) . ., (2 — 2p + 3)(2n — 2p+ }_)j“-"‘z
0 2021 ~2)(2n — 4) _ . . (2n —2p + A\2n — 2p I 2)
If we now put p = n

. b
sin2 =y, dx.
o

r‘msin”  do _@Zn—1)(2r —3)2: —5) . .. 3. 1.““!2

o 2n(2n — 2)(2n —4) . . 4.2

(2n — 1)(2n — 32 —5) .. .5.3.
2n(2n —2)2n—4) .. .6 . 4.2 "2
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.S:yz sinx dx
m Sn% sinfd - S:}i‘siﬂ3 xelx
D]II] S:% ain X dx — Sﬁ%sin2 xdx

N\
¢\ K )
- !5' 207 25° 30" 35" a0 45° 60 65' 75 A0 As* O
o & I QY &% F
AFiG. 6.
F:Qf@vplamtion see text,
&
If m in (i) is an odd integer, we m'ay write either
A%
2 In(2n — 20 —4) . .. (2n—2p + 420 — 2p +2) rfz ,
an +1 — { 2(8=9)+1 s dx’
I , Sin¥ T da @ D@—) . . - (Zi 5N —2p T3]0 s ¥
O
or : A\
/2 (=22 —H2n—6) . . . (2n—2p 1 2)(2n—2p) rf2 _
oan_t @\ ¥ =Pt |
L S A T Y2 —B)(2n—5) . - - (2n—2p - 3)(2n—2p+ 1) o S ¥ o
When p = n we therefore have
2N On(2n — 2)(2n —4) ... 4.2
an 41 e
j: St R A = e N 1@n - 3) . . . 5.3 SRIC
We must then put p = (n — 1) in the second integral above, and
. (2n - 2)(2n — 4)(2n —6) . . . 4.2
2n—1 . ;
J: SR ds = Ty —BYon —5)...5.8 © ({iv)

For brevity, it is convenicnt to denote the integrals defined by (ii), (1i) and (iv) respectively
as Iy, Tpwiy and Ip,p.  Within the range O to «f2, sin  is less than unity, so that sin™ » must

16
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exceed sin™+! x for positive values of a1, and the arca under the curve v sl 11 & myst be
less than the area (Fig. 38) under the curve y - - sin” . In the new notation therefore
J'rﬂﬂ-—l = IEH = I'.!ni 1
(on-1 ~ Lonp ) = (Low = Loy 2o 1 . : . . (v}
From (ii1} and (iv) we have
Qi -1- 1
Hon1 + Lonyy) —5—
2n
When # is indefinitely large, (21 + 1) ~ 2#; and

(12-11—1 - IZH+I) ~1
Hence from (v) above O

Li(l,y ~ L) L O\

For indefinitely large values of # we thercefore have in accordance witlXxi) and (if)

(20 4 D21 — )20 - )21 —5) . . . 5. pN = 1
[2n(2n —2)(2n —4) ... 6.4 .2\ T2

. . 2.4‘6...(2!:—4)(2(:—2)313]3
.(?1-+-%)7r_|: 1.3.5...(231--»\-‘3:)(‘2.!1----1) ’

X}

Since our assumption is that » is very large, (n ¥ 37 =~ nr; and

—  2.4.6.8 o8 (2 — 421 — 220 :
Viw = =\ - Lo ) _ . (vi)
" 1.3.5.7. . . (2n —3)2u — 1) (

3

The expression on the right hand is Wallis’ formula which exhibits the relation between » and
the limiting ratio of two continued “products, the latter related (Ex. 8 in 1.0, p. 12) to 2n !
and nl. Its discovery naturally $uggested that = might enter into a convenient expression such
as that of Stirling for computing factorials of large numbers.
2K
73
\“\ 6.04 StirLING’s FORMULA

Mathematicians ‘qf\he late seventeenth and early eighteenth century obtained continl_led
product and gottinued fraction formulz for = and e, the former, as we have seen, invelving
EXPFGSSion?hich recall factorial numbers, At a time when the calculation of trigonometrical
tables and tables of logarithms for navigation and trade endowed the numerical evaluation of =
and e at an assignable level of precision with peculiar topical interest, the binemial theorem was
also a new tool ; and any clue which might throw light on the properties of the factorial numbers
embodied in

binomial coefficicnts excited widespread concern. Stirling’s theorem did not

indeed hatc.h out f.ully fledged. Others beside Stirling in part anticipated it. 5o no economical
demonstration of its validity can now recall the tortuous path which led to the discovery of the
formula for

p : which we here cite alternative derivations. Many approximations for computing

t;i:??tnals of large numbers are indeed more or less admissible, but none more precise and equally
by | y,

_ One method of demanstrating the theorem of Stirling depends on the propertics of a con-

eoppod product function, here denoted G, due to Glaisher (). ¥. Math., 1877), and defined as

ollows :
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SO RO SNCES R

s log G =3 (2 + l)log(l +}) R )
r=1
We may rearrange (i) as follows :
c_l1& & g 10 (Znypn-1 (2n + 2)2*!
T 3oR 45 4t7p5 B2 87.8% 0 T (2n— 2)2n=3(2n — 2’ (Qn)2n—1(2n)2
_it1 111 1 I (2n 4+ 2p02
TR 4R (2n — 20 (2 1
_ : (2n + 25" S
T (2.4.6.8...2m7 2 ' &Ly T
N\
We may write the factor on the right as (”:‘k
Bt %'\ 1
F(2my2n+l (1 -+ 1) =280 21, (1 + N \ (1 + —)-
n % n
A\
When 7 is very large {1.08): L«

an
(1 —1—-1-) geﬂ;,{l“'—}—l)zl,
" a':.‘ ki

ney. 1
AN R T
ANH H

Q
PA\Y
)
E\ 9 pintl | ol

Hence (ii1) becomes

SO 206,820y (iv)
AN/
:'};": . = on  phth e
\O~ R - B v
N\
Ilence as in Lx. 8,'@1‘?1.01 (p. 12) we have
Ny
\J  an
Q \/Gn s n 1. e
n!
nttt e

=~ \/—G_n_ . . . . . . (Vi)

Similarly, we may write
2Rt ety ganid
(2n)!=(2n)2;.e=2 L2t e
VGyy V Gyn

By Ex, 8 in 1.01 we also have

nl)2 , 22%
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In this expression W ~ Vnn when # is very large, as defined by (vi) of G.O3 above, so that
(uly . 22"
Var
(n!)2 L9 9ertd gendl
Vam VG,
f+d
oy YRmeohe (vii)

v Gzﬂ

(2m)l =~

We now divide (vii) by (vi), and thus obtain

ales Vone .0 VG, = G, . . SO L )

. O\ _
It now remains to show that the ratio VG, = G,, - - " in aceordance with Stirling’s
formula (iii) of 1.09. In (ii) above, we can conveniently substitute.asfollows :

1 1—|—a_2r—{—2_( 0
a_2r+1’ 1—a 2 _’L};)'

We can then put \\
N 1. 14a LN
2 1 1 (1 —) EE . EREN r - — ¥ J— .
. (@t T)log{1 4 ~log — :'a[l(‘;;j(l + @) — log (1 — a)]
From Ex. 2in 6.02: oW

log (1 +a) —log (1 — a)j:; % + 8a® + 248 1 BaT | ete,
1
E[log (1 4 a) — log (}\_ a)] =2 5 2a? 1 Bat + 245 .

N\
1 g 1 2 1 2 1
o {2 11 (1 -):. S U e
(2r + 1) log +r 5@ T3 g

. cte.,

.= - = _ . . . etc.,
A\ (2r + 1)2 (2r 4+ 100 7 (2r - 1§
r=mn 1 Y2 9. 1 9 » 1 9 = 1
. 2?‘-}_1 l (1 S :2 1 - _ _ . PR P 1 1 o
2,0+ Dl GRS s ey T

By (ii) above th:f:.éféi:ies on the right defines log G,. We now write for brevity
YV ol 5
r=1 (2?’ _1[__ 1):0 }
With this convention, s, = n, so that

log G, = 2n + 255 + L5y + 255 . . . ete. . ; . . (x)

. Now all thf: series defined by (ix) are very rapidly convergent, if x> 1. They therefore
arrive at saturation limit after comparatively few terms, attaining a limit independent of n, if 118
large. ‘ Furthei:morﬁ, successive values of s, diminish rapidly and the limiting value of successive
terms in (x) rapidly'approach ZEro as we increase ¥, Thus (%) is also a scries of terms whose sum
(_3108(?13? approaches its upper limiting value, when # is large, so that its value no longer increases
In virtue of making » larger,

| Subject to the restriction that 7 is large, we can thercfore con-
fidently replace the serics whose t

first term in (x) involves s, by a constant log K independent of
the numerical value of n, so that ' ) =Y g ?
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log G, =~ 2n 4 log K3,

. log gz o~ 2n,
. G, K262,

Since K2 does not involve 7, we may also write
o Gy = Gy e
VG, - Gy e™
B o ey Y
On substituting the above value of VG, + Gy, in (vii), we have Stirling’s fortula :
.Y
nl o V2 . u® e A ~

An alternative derivation of the theorem proceeds from (viii) of 6 02 ‘where we have already
explored the approximate summation formula :

u,'\
log nl = ZIogfwj iogxdx i . N\ . : . . (xi)
r=1 3 PN
Now we may write ' W
n+} 13 2} ANfr+i
j logxdxzj logxdx—{—j log x dx ++ ™ log x . dx
i 1 PR R PR

4§ R Y

= j ~ log x dx ~
~ [(f-kl)li%(TV DG —Dlgr—H—C+H+0—D]
l:log xS 3) — (- 3 log (" : ) 1] Y 1)

Since the cxpresswn o'\the right of (xi) is inexact, we may make the error « explicit by setting

it out in the form 1+
.(\\ log nl = I log xdx+ e . . . . . (i)
¥

Whence from i:{l)\and (xii):
\ i ogr——ri [log(f-—-l)—-(r—}—g)log( +i) 1]

=1 re=l ¥
S a5 e ()] i
= - - lo . . . .
v o (=) (2
It is thus convenient to express the error « in the form
€ == iu.,. . . . . . . . (XV)

rel

—1+(r+1)10g( %>-|— g( ré)
1404 pog (1 ) +1os(1 45

—)
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By recourse to the logarithmic series, we therefore have

1 1 1 1
A Rt R R P R

Evidently, the first term (unity) goes out, and we are left with a very quickly converging series,
whose sum is of the order r~2. ‘Thus the series ¢ defined by (xiv) 1s also quickly convergent for
high values of #, approaching a limit which is independent of » (the number of terms) when #
itself is very large, So we may write e = — log A as a constant without serious error in {xili),
whence

lognl~(m+4+Plog{n+ 1) —tlog}— = —log A

Since we now assume that # is very large, we may neglect } log § and alsgrwrite {# -|- 1) log
(n + §) =~ (n + %) log n, so that .
n )
log [Ai ] J o~ —p, Ko

S,
74

Lol A nt e ). . : . {xvi)

To evaluate 4 we now make use of the result established in Exahlf; le 8 of 1.01, viz.:

. (nl.)z 22111 - AE . ?-3.211.+"I.l- N —‘2n B 2_2n
W= =4 (21:)2\&**‘-%? -

From (vi) in 6.03 W = +/nm, so that N
AW,
Hence from (xvi) we again derive : N\

W /2 gt TR pmm,

chonl o~ Vg, qn . e—m,

) MN6O5 TrE Gamma FUNCTION

We have already deﬁn{dft}ie Gamma function as a definite integral by (v} in 6.01, wiz. :
,s’\ o

N I(n) = j e® , xml de ) . ) . .1
~0" 0

An aiternative form of (i} more explicitly related to a large class of statistical functions is obtain-

able by the substitution x = Jz?, so that
At =217 g% and dx = 2. da.

Since ¥ = 0 when # = 0 and 3 — oo when x — oo

w0 (==}
j e a1 dx — 21—"I e~ ¥ gin-1 g

1] 1]

1 [ .
N . T
1]

In conformity with (i) we may also write
]

r(n+1)==je~='.x".dx P (%)

]
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‘I'he method of integration by parts resolves the expression on the right of (ii1) as follows ;

=] S
—x ki - -1
[—e x} +nje”.x . dx,
] 0

F(n+1):ﬁl"(n)—,—[—ﬂe—m.x“:|w- S )

o
Now we may write ™%, &% = (¢° = ")~ " in which

mun_l xE x’d x-l
¢ a —E(””z—ﬁa*a-“)

__.[1 L 1 n 1 | 1 1 :l_l_
ot At 2!x“‘2-‘-3_!x”'3"'+(n-— N N\

[1+ x 2 t]
al '+ D) (n12)'r§”'ec

|iz il S T

n —,—r)'r K7,

= {n—1) 1

.
Sy rla

From (v), when x == 0

& x" = 0 and e* .xf‘\:;{).
When ¥ = o \‘\\
Fx~" =0 and H" =10,
J%)
[e"“”xf% =10
o\ e
Thus (iv) becomes ,};’3'
L(n™- 1) == al'(n) (vi)
In accordance with (1) i\
¢(\J a0
(L) :L e~tde—1. . . . .. (v
Whence by (v} @
rey—=ri1+1)=1r{1y=1 =1
ABY=T(2+1)=2r(2) = 2.1 =
NT(4) - I(3 +1)=3r(3)=8.2.1 =3l
y;;\ [(5) = I(4 +1) — 4I(4) = 4.3.2.1 = 4!
In general fKt‘“mtegral values of z
'n+1)=n and I'(n)=(@x-—1)! . , : . (viii)
In particular, when 7 = 0,
=TI+ 1=r(l}y=1 . : , , . (x)
When #n = 0, (viii} becomes
) = (=1
r)y=+o . . . . . . (®)

In accordance with (vi) we may also write
I'ny=(n — 1)I'(n — 1).
0y = — 1I(— 1.
. IM(—1)= £ .
—1)y= —2I(— 2).
I'—2)=+ w.
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30 k1)

2-5 2[5

20 zlo

15 il

10 o

o5 ofs

[ == . =% ) -1 i A o2 T3 &
(\A
=05 -O5 e v
/s

{
L 4 o
z’~:"
-la ‘['O u\ y _rlXJ
AN
&/
-i5 -1}5, \
20 /726
L
2.5 ;o o-as
R “:
-3.0) ™
P\ g -do
R A »
RS
O\

-3-5 "l

NN -1l5

3
=40 5 ‘“k [\
-4 -3 NS -1 5] 2 3 4

\‘ "4
P:Ip.\JQ‘ The Complete Gamma Function.

S

) <
For integral values of wetherefore have

\\*1‘;2*(5) — 41 r0) =+
RNRORS] M—1) =+ o
O Te=2 MN—2)=4 =»
V @ =1 r(—3) = 4 o
(1) = o M4 =+ w

fl‘ Zz tj?;fcgi;‘:ﬁ;:l?;ﬁll:reo?r nega‘;iw;e_ alike, the numerical v_:%!ue of () is_ thus consistent wi_th'thfa‘
oo Sefinition W(l;zo; g. Iln af:cordance with (viif). ¥or fractional values ({f 1, 118 2
bty reted 10 7 w valuation througl:nout the range n = 1 to - 2 suffices for the
puile) pma af::lirf: t' austive tablg b5y r;:course to (vi). One method of obtaining I'(%), and hence of

ctionfor n =$§, 3, Z etc., depends on (i) in which we substitute » -== §, so that

I'}) == Vo~ 17722,
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An alternative derivation in 6-07 (p. 251) depends on the relation of the Beta to the Gamma
function. From the relation specified by (vi)

I(1-5) = A7) = 1W=; I(2:5) = 15I(1:5) = 8V, ete.
Since I'(n — 1) = I'(n) + (
N—y=rg—-n= (l)ﬂ(z—l)——%/w

K—18) = I(— § — 1) = I(— }) = (~ 18) = + § V7, ctc

n — 1), we alsc have

Accordingly, we can draw up a table which discloses the general contour (Fig. 59) of the functxon
as follows ;

" () " O
— 45 — 0022 + 05 1279
— 40 + o +10 317000
35 + 0270 +15 N 0-886
— 30 + co =20 T 1000
— 25 — 0945 +25 N 1-429
— 20 + o + 3 0 ' 2-000
15 + 2363 1 350 2658
10 + oo ﬂm 6-000
— 05 — 3544 MNYas 18-61

0-0 + oo R 24-000

Values of I'(n) for fractional values of 7 othes than odd multiples of 05 are cbtainable by trigono-
metrical methods, a clue to which is in §07.
The student shouid be able to deduice the following relation from (i)

x;~~’ F
\]. e yrmlde = () . : . . . (xi)
oy an
P
I
:"\:‘¢
N EXERCISE 6.05

1. Show ti{ai"“j:f’(;i; + ) = (p + 5 — 1) T(p).
\ )

2. Given the following values of e~%, evaluate Sue—“ & dx = I'(2) for integral values of # from
1 to 10, and draw a graph of the function °

7 e~ n g "

1 0-36788 6 0002479
2 0-13534 7 0-000912
3 0-049787 8 (+000336
4 (0-018316 9 0-000123
5 006738 10 0-000045

3. ILvaluate J.? e=* 52, dx — I'(3) for the above integral values of # and draw a graph.
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606 MomexnTts as GaMmMma FuNcTIONS

It is sometimes possible to express moments of a distribution as Gamma functions, in which
case it is possible to express a score distribution as an incomplete Gamma functicn. If the
distribution is symmetrical and k is even, the kth moment about the origin (mean) in accordance
with (xi) of 6,01 is approximately given by

mk.——:2_[wY.X".a’X.

For the normal distribution ¥ = (Za¥)}*exp (— X% = 2¥), and we arrive at the rdentity
V = m,, if we write the above in the form

2 [(*zx ~ (
My = = { eV X?. dX . : N\ . 1)
: \ 2TTV J.U s\.
From (ii) in 6.05 we have AN
[Tetamrgz=0m1 Py . AT )
e et dr — v2 1(15) = '»/z\ N )
If we substitute s = X — vV in (i) we obtain AN
opt [® =2 LY
"y = € IN2 . da.
* '\/27TVJ W
Hence from (ii) 2 =5 g

The 4th moment of the normal dlstrlbutmn 8y obtamablc in the same way :

@ xe
m4—m"— EW_.X4.dX
~\ 671

WA= e~ 2t da
P\ Vi },

The integral is in this case'\quwalent to (11) above when n = 2-5, so that

2
’ .\ my— V22 2w 1(25),
\ .
."\'
\"\j»’ _@p) 3«/;:
Z 4 :
T L (1

In the same way, we derive the mean deviation regardless of sign, as specified by 4 in 6.01
(p. 231

2§ :" Y.X.dX.
For the normal distribution this is

2 [®zx
- eV (X 4dX
V2V |,

:J%Z‘ et o dy.
EL I
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The integral in this case is equivalent to (ii) above when z == 1, so that

_\‘we—"“’g gde=TI(l)=1,
0
2V _4o
. 1}—,‘/—-’:_3 . . . . . .o

Thus the mean deviation of a normal distribution is roughly four-fifths of the standard deviation.

B8.07 THE Bera FUNCTION

We have notcd alternative forms of the Gamma function defined by (i) and (ii) of 6-05.
"T'he Beta function is a definite integral which we may meet in three disguiscs of \hu,h the one
most commonly cited is

B(m, n) = _[ xm=t (1 —x)t.dx . \:\ . . @
Let us now make the substitution \ O
o 1 |y ® AN
1+’ 144 ¢
P —x
w=— x:\\;
From this we see that # = co when x = Oand u =0 w:hé}n‘x == 1, also
dx __— 1 : cl.x:_ du ’
du  (L+u)* 3N (1 4+ up
L =1
-. B{m, n) j‘ T rame dui,

BK@) J If;)wn R 1)

Alternatively, we may make thqsubstltunon x — sin® @, so that x = 1 when ¢ = }mand x =0
when a = 0. We then have /™
ﬁx dsin*a dsina
\“ da_ dsina  da
Q dx = 2sinacos 4. da.

*

xm—'l\(i — )L ==sin? g, (1 —sin? )"t = sin®*" " a. cos?™ "2 q,

= 2sin @ . cos a.

-, B(m, n) == Zqu?m lg.cos®™ la.da . . . . . (i)
0
Ifweputm=4,n=>3%:

B(i, %)=2Fda=_7r . . ‘ . . (v
H

The relation between the Beta and Gamma functions is most easy to recognise by recourse
to (i). If we integrate by parts

1 _ =1 4|1 _ 1
j ™ (1 — &)t dy = [(1 A :| + ( 1)[ (1 — xy~%dx
& m 0 m 0
n— 1t

I x™ (1 — x)*~ 2 dx.
]

m
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Similarly,
lm i n-2 gy . ”“ZJI P | (I_x)n_s dx
0:,\c(—x) x_'m—i—lox . . dx,
1 7 — 3 1
m+1 . 4yn—3 e — m+2 (] — “_"'.d‘,
Lx (1 —xp-3dx w_— ZLx ( x) x
i (1'1—1)(?1—2)(?:—3)‘[l , -
. m_171 __ et Ja m+Z (] eyt e
. Lx (1 — &=t dx Y P K (1 — =) de
(n— D@L .
- m O.x +2 (I _— x) ¢ dx.
More generally, O
1 — 1y 1 L)\
juxm—- 1 (1 _ x)ﬂ—l dy = (n%} j\nxmﬂ;—- 1(1 _ x)f;:,@— Yty . N (V)
If nis an integer, and n = (p + 1), so that p = (n — 1), ’ \‘ '
1 — 1 \
(ﬂ— ])(ra 1} J\ v,
m— 1 _ -1 pp— B R— 2
Lx (I — )y~ ldx RS x‘)f\ dx
(n— e L nE
— 0000 AN Y| ymtn-—-
(m+n— 1’)‘.’“3; \E)‘ :|u
. ‘:,’:Z(n — 1!
w4l m+n—2)...m
_(n “——"l')’! fm — 1
d‘m’\(m +an— 1)
£ '\nv .
B(m,:n) 2 w . ) . . ) ; . {vi)

O I'(m 4+ n)

When 7 is not an integer{(3.2— x)*~»- does not become (1 — x)® == 1 after p = (n — 1) opera-
tions of the type whick1éd us to (v) ; and the identity defined by (vi) calls for separate proof ;
but we can obtain ifidependent confirmation of its applicability to fractional values of m and #
by recourse to (iif}s T'hus we may substitute m = 4 — # in {vi) to obtain by recourse to (1v) a
result a]ready.\fgsf‘;)’é]ished in 6.03, viz, :

_____ : _IHr)
= B D) =~y
o Py = Ve

Similarly, we obtain by substituting m = 2 and # = 1 in (iii)

[

B(

raleo
o=

3

)= QI sin®x . dx.
0
From Example 5 in 6.02 we have

— . E11

B . oy X¥—sinxy.cosxl|s o«
sy . dy = | ——— """ 7 =,

) 2 o 4

. B3 Yy = _z

Fraey
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If we make this substitution in (vi), we also get as elsewhere shown,

c TEIB 7 g,

o TE) =3V

We are now in a position to appreciate the meaning of the transformation from (xvi) to
(xix} for the hypergeometric distribution in 3.09, viz. :

#+d
i w v b_-{:l
J k(l — E) (1 4+ “}5) aX=C 21 — =)dz . . . (vii}
,,, a b tb
bt+a
We can at once evaluate C from (xx) in 3.09, viz. : O\
i t N u L\
| = Lz (1 — =) da. -
Sinceo=(v+1)—landuw=(u-1)—1, N
é Bl 1de) A - .. (vii])

In the particular case when @ = b and # = o, so that the susve is symmetrical with a range

X=-1a xR x\~
Y0<1 — 73“2) dX=0C. & =z de . . . . (ix)
C= N ®
B(l @l T

In (vii) above k = ¥, and ~ T
C— k(ﬂ,’ -+ b)ﬁi‘ﬁ-{d . YO (a -+ b)u+u—;—1
({'\‘b*’ ) a* . b*
P a¥ . pv .
s Yes e T e s el 0 0 ™
We thus see that the incom léte Beta function describes the contour of more than one class of
sampling distributions. en n# = m so that B(n, m) = B(n, n), it is possible to express B(n, )
as a simple multiple of B'(}, n}, as follows :

Bfw) n) — Jl m-1 (1 — a1 dy
G =ls

E 1
= I a1 (1l — x)r—tdx + Jx“—l (1 —ay—1dx
0 :

If we put ¥ = (I — ») so that ¥ = (1 — x) and dx — — dy, we have
x:-%,y'_z‘% and x:I,yZU,
so that

1 1) ¥
an—-l (1 — I%.)*n—.'l dy = — Jyn—l (1 _y)-n—l dy — J‘ an—1 (1 . x)n-l dx_
3 3 0

!
. B(n,n) = QJ V(L — )t -tdx

i}

o
= — 2[ {x — 2% 1.
13
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If we now put & = 4(1 — V), so that dx = — lu~tduand (x — 2" -1 . (1 — )1 = Q2n—p
we thenhaveu =0, x =l and » —= 1, x =0,
I .
B(n, n) = WL&:‘*(] —u)"~ 1 du,

B(n,n) = (3" ' B} n) . ) ) . : . (xii)
Whence it also follows that

). Tn+H=20-=val@2ey . . . . (xi)

EXERCISE 607

1. Evaluate I:x”‘—l (1 —a)1 = Bmau)whenm=1,n—2 ~
for values of @ from 0-1 to ("9 by intervals of 01, and draw a graph of the function®

A\
2. Tabulate the Beta variate for the values suggested above and graph:\thc result when m = 2,
n =2, ¢ ":'g
0 1 _ AN
3. Show that J e=9% dy = —/7, ~N
0 2a \
—1 N
4. Show that EB(m, n) = n_m B(m + 1, a1).

b. Show that r_ (@4 a1 (@ — 21, dy %:[QQ)m-.Ln—l . B(m, n).

R
o\

6.08 TgE lj‘:fARSON SYsTEM

What we commonly call curve-fitting by Karl Pearson’s method of moments signifies the
specification of the (y) frequency distrikition of a score » by an cquation involving as its definitive
constants (parameters) the momqn%s\of the distribution itsclf. Lor reasons which we have
already scen, the relative values Gfthese suffice to exhibit the two essential featurcs of a curve
of the type to which samplingdisi:ributions—-theoretical or empirical—most commonly conform.
Of these, one is skewness, th&6ther steepness. Itis convenient to combine the moments relevant
to one or the other in anlndex of which the numerator and denominator each involve the same
power of the deviationé\(X }; and we shall name these at the outset. We define the coefficient

of skewness (8,) independently of scale, so that its value is neccssarily zero when the curve is
symmetrical iK'"w}ﬁéh case my of 6,01 is zero :

P

N (my)°

The definition of the coefficient of fatness (8,) is given by

B = = ) X ) X ) . (i)

(mz)?

As pointed out on page 232, a relatively low value of B, so defined signifies a relatively flat

distribution.  For the normal distribution 8, = 0, since m, — 0, and from (iv) of 6.06, we
obtain

. B=3 S S (i)
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"I'he flattest type of distribution is the rectangular, defined by equal frequency of every score
value like the distribution of single toss scorcs of a cubical die {(y = 3). By definition, the
frequency is then the reciprocal of the number of classes defined by particular score values.
For the score range 0 — 7, signifying that the number of classes is (r + 1), the 4th mean moment
thercfore takes the form defined by (x) in 6.01 as

X=ir 1

My, = XE,

x= 47 41
When r is large we may write this as

ir S I 4
o s ax 2R

¥l oa ik + 14 4 A
Subject to the restriction stated, we thus obtain O\
1[X)¥r #? Y l:\
i <aly o
mgz;[—‘r] i':(), \/
1M X357 4\\
’”42;[?]_“?8 :
Whence from (i) and (i1} ,;."' v
f=0 aid fi=% . . . . . . @

We call 2 unimodal curve platykuriie, if the numerical value of §, lies between limits defined
by {111} and (iv). o\

QOur problem is now to find¢a{iodel expression which will assist us to make explicit the
geometrical properties of a distribhion by recourse to these indices. It must therefore contain
at least three constants, Cle?.’l:.ly also, the curve it represents is likely to be skew, if it is to
implicate B,* ; and we ¢ fi_pet the clue we need by retracing our footsteps to the difference
equation (i) which we defived in 3.09 for the hypergeomctric distribution. With that end in
view, we shall ngar(:I«Qi ‘erely as a pattern, and have no interest in the special meaning of the
constants it containg® We there based our treatment on the approximate equation

4 ¢\' 3

@ o (M —=x

Ax

C+ Cx +x2

To do so, we made an assumption justified by the end in view, viz. to show that the Limiting
form of the non-replacement distribution is the normal. Had we not made it, we might have
made the skewness of the curve when p and g are unequal explicit in the derivation of the
original difference equation, i.e. (i) of 8.09. As in that context, we can still use the approxima-
tions (rp — @) ~7p, (n + 1) ~nand C = (ng — r) = (ng —r + 1). If we put na =7, (i) of
3.09 in which Ax = 1 then becomes

Ay, aM-+r—nx —nlx—M—a)
y, C+CxLaxt C+HCx+ad

% If a curve is symmetrical m; = 0, hence also §; = 0} but the converse is not always true.
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We can now write this in the form. :

X — a)AX
AY, = Y0

Co + CX + C,X¥
dYN (X — a)dX -
¥R rox+oxe 0 W

"The last expression contains four constants, and it is not difficult, though a little tedious, to
express them uniquely in terms of the first four zero moments which suffice to specify the two
Pearson coefficients defined by (i) and (ii} above. It is thus a pattern for a very comprehensive
family of functions suitable for describing sampling distributiens ; but it will not be necessary
for us to develop the more important variants of the pattern from first principles, as set forth
in Kendall’s treatise (Chapter 6, Vol. I). 'We have already seen how they sgay arise in con-
formity with assumptions more directly relevant to situations they describe Nand it is therefore
possible to approach our goal by a more direct and far less laborious routé,

In what follows we shall confine our attention to three of the five miost important familics of
curves of the Pearson system, wiz. Types I-III.  Of these Type BH\is an incomplete Gamma
function, Type I being an incomplete Beta function of which TyfeIl'is a limiting case. In its
turn, the normal is likewise a limiting case of all three, each.of'which we have met in preceding
pages. The fact that these three families, together with the normal, constitute some of the
important functions descriptive of sampling distributions; endows the method of curve fitting by
moments with a special claim to consideration in virtueef'a peculiar property of their successive
zero momenis. This arises from the fact that the ifigbmplete Gamma and the incomplete Beta
function alike contain a power of x as a factor. «f; therefore, we can express the integrand (y)
definitive of the probability density (p. 185) ofa Score x as a function of this sort, we cbtain the
rth zero moment which is the complete integral of y&”, by merely stepping up the factor Involving
definitive of the probability density (p. 185) of a score x as a function of this sort, we obtain the
rth zero moment, i.e. the complete integral of ya®, by mercly stepping up the factor involving
a power of x in the function with lif'change of form. As the reader will have the opportunity
of seeing more clearly below, this means that any zero moment of a Gamma variate is itself
expressible as a complete Gafama function and every zero moment of a Beta variate 1s express-
ible as a complete Beta funetion.

The simplicity o%ﬁ, eperation of determining the zero moments of one or other will appear
at a later stage. Toexploit it, we must recall the procedure for transforming zero moments
into mean momegtg;; as expounded in 6.01 ; and it will be convenient to set out once more the
relevant formulde s

ms = pbz — ,L[E . . . . . - . . (Vi)
my=pp— B pe+ 2% . . ... (vi)
mo= gy — gy O — 3 . . (i)

The complete system of Pearson curves includes several which are merely muscum exhibits,
but the three first types (I-1II) which involve Beta or Gamma variates are of special importance
in connexion with the theory of sampling. They are the theme of what follows. 'Types
VI and VII which define important sampling distributions mentioned at the end of
Chapters 7 and 10, will be the subject of separate treatment in Vol. II.  Since we have all‘ﬁ"ady
seen how a Gamma or 2 Beta variate may arise as the limiting form of a sampling distributiomn,
it will not be necessary to traverse the tortuous steps which led Pearson himself to discover the
general pattern of his system. It will suffice to show :

{@) how it is possible to express a Gamma or Beta variate in a form which contains 0o
constants other than the mean and the mean moments m,, n1y, m,;
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(b what numerical values of the Pearson cocflicients B, and 8, as defined by (i) and (if)
above are indicative of the suitability of Types I-III for giving a good area fit to a
sampling distribution when we know what its moments are.

Pype II].—To definc 2 Gamma variate (Pearson’s Type III) in the most general way we
recall the identity specified by (x1) in 6.05, ziz. :

=] fa] ’
j ek gn—Lly = 0 j e zn-ldz = k=" I'(n) . . (ix)
0 0 :
k‘ﬂ o0
- —ka aon-1 —
T J-ﬂe X dx = 1,

The above satisfies the necessary condition that the cntire area under the curve of a probability
function must be unity. In virtue of this identity, we may therefore assign a prabability density
7 to a score ¥ which has a continuous range of values from 0 to co by the equation definitive of a

(Gamma variate whose exponent is (# -— 1) with scalar constant %, namely\' \J)
. ke gl \ '
2o e —————————— . . N . . . X
Y I'{n) _ AN 2 )

\~.
By definition, the rth zero moment of a distribution so defined i{é%ivcn by

O N\
— v g kR g ‘d
for ) Lx e x\f\ x
A
= P( )I e—Ez 0 PT—1
RlJo L QY

T'he integral in this cxpression is a Gamma vvarfa’t"e of exponent (n +r—1) with scalar constant
%, whence by (ix) N

' j e—:&é\;“""—l dx = —-——F(: j—r)
o ¢ \J S
O .
\. —‘kﬂ Iz +7) . . - . . . {xd)

o’ T RTTm)
In virtue of the fundamental*property of the Gamma function
7"\W .
- \,Nl(n 42y = (7 + 1)n+ 1) =un(r + 1) I'(n), )
and in gencral &) Fn+71)=(n-+r-0"TIH . : C L (xid)

Thus (xi) rcdueeé‘}(')‘ .
/ pr =k (n +r—1" . : . . . (xdii}
We thus derive the first four zero moments of the Gamma variate ‘as

pp=n.k"%, pe = (n — 1)Pk-2,

g = (1 - 2Bk, p, — (n 1 3)WRL

By means of (vi)-(viii) we obtain the mean moments by substitution :
my=n.k=%t; my=2n.k"%; my=23nn+2k* . . (xiv)

In accordance with (i) and (ii) above, we therefore get

4 6 '
ﬁl:?z and ﬁ2=3—|—; " . . . . (aw)

17
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THE INCOMPLETE GAMMA FUNCTION
{Pearson's Type M)

- 15
uu.
" ' - v
2 r- fﬁ:fl) ¢
BT
1O k=8
4
B 4
O
et
54
.O‘.
034
04
-0l 4
o

M e e e LR e e
1 2 3 4 5 6 7 8 9 DU RABWE%T

[+]

Fic. 60. )
:'.\\‘

The last relation implies that 8, = 3(1 4- $8,). .\ When n is very large §; =~ O and B, =2 3. The
Pearson coefficients of skewness and flatness’then differ insensibly from those of the normal
distribution. For practical purposes (xv), sitffices to define when the Gamma variate is likely to
provide a good fit for a unimodal distribittion, v7z. 8, > 0 and £,> 3-0, and , = 3(¢ + 381,
Thus the Gamma variate describes alskew curve extending from 0 to infinity, being more steep
in the neighbourhood of the pea%éha‘n a truly normal distribution.

Either of the Pearson goefficients of the distribution, as specified by (xv), suﬁic‘t.e to fix
nin (x); and & has a simplestelation to the mean score value M( = ) in virtue of (xiii) from
which we obtain M = n’,s—}.\ From (xv)

O — .
N w2 and (n—1)= -5 . i ) . (xvi)
« 1} ﬁgl ;31
Hence we have.also

™\ A=, ...
N/ MB,

Thus we may transform (x) so as to contain no constants other than the mean, the second mean
moment and the third mean moment :

(xvi)

_ \MA L (i)

(G
B
This is Pearson’s Type III when the origin is at # = 0. It is customary to cite it in an alterna-

tive form by transferring the origin to the mode at x = 2. 'The mode being the turning point
of the curve, we determine as usual by equating the first derivative to zero, i.e.

4 \E o A
-
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Dﬁ-‘(y) = C{_ ke— %= gn—1 (n — ]_)g—ka: xn-z} =0.

.o n—1 }
LE= = . . . : . (xix)

If we now represent the score deviation from the mode by X, we have X =(x — a) and
x={a + X) so that
xnl = a¥ = (g { X)), e

ka
Loxntl= a*’“(l + %{) .

We then write (x) in the form

ka
k. gke  g—*E (I + -}E) N\
a
Y= ek I(n) ) ' Oy - )
S\
From {xix) we have ka = (n — 1), so that G\
n oko+1 _ 1y \ -‘:
B gie — km a _ (n—1) . L
a a b)
For brevity * we may write )
4 B e .
m-n=p=228T 0 ()
By
By (xvil) and (xix) 2N
- g(—%@ L (i)

Whence by substitution in (xx) we ohm”i;} an equation involving three constants respectively
defined by (xxi), (xxii) and (xvii) in tfms of the moments of the distribution :
‘Q\ s s 4 (1 4 %)ka
DY = R )
O e?.a. l(p+1
QF ()
This is the most usually cited form of Type II1, the range of the distribution being now from
X — —ato X =) The reader should with little difficulty be able to derive the analogous
expression for a Pearson Type I1I curve with the mean as origin.
Types I and II—Just as we introduced a scalar constant in the simple incomplete Gamma
function to derive the general form of the Gamma variate or Type III distribution, we shall
now modify the Beta function by the scalar substitution & = as, so that ¥ = @ when & =1, and

1 & 4i —1 — k=1
j #-1, (1 — 2. dx = B(j, k) sj ] Gt i Cad
0 0 af +E-

1 # .
“o—_—e | ¥l (g—x)l.dx=1 . . . (xxiv

af+5-1. B(j, k)L ( ) (rxiv)
* It is customary to use £ as in (xxiii); but it is (needless to say) not the same as the parameter p of the

binomizl veriate.



266 CHANCE AND CHOICE BY CARDPACK AND CHESSBOALD

We may then define the probability density (y) of a score whese values inercise continuously
from o to @ in the form
oo . &1, (@ — )t
e % T
This ‘generalised Beta variate is Pearson’s T'ype ¥ when 7 and % are unequal, aml includes as a
special case Type II when j == 2 The constant a has then a simple mcaning, 1 we shall now
see.

By our definition of the mean M of any distribution, we can determing that of (xxv) as
follows :

M J“(x)xJ—l e - Xt dy

o @ ’-‘—',B_(j, i) N

1 J*u N ,
= e | a7, (g~ Py LN . o fxxwvi
k-1 B(}, fe) o ( ) _ y ( )

N/

From (xxiv) above

jax’.(a — )1 dx :-I

0

N
.

a1l (a _ x)k—l ) (&1\_\5 @t .f.-;;{j - 1 ,{-:j‘
0 \

M=@BUA LR _al( kR IG 1)1
B(j, k) LW 1 j 1)
Since I'(j + 1) =7 I'(j) and I'(k —|-j+]):;,(fe:;}:;f) Pk + ),

“' 3

. jfg“: al._}; . . . ) . . (xx\«"ii)

When j = kin (xxv), we thercfore hg{g M = {a, and
¢ \J
. 4 \‘~‘ o P — 3 . 1 e
\ N y = ["”(QIL_T’)]J_ . . \ . . (mxviil)
(23)% =B, j)
NG
If we now transfer the origin'to the mean by the usual substitution X = (x — A7), w .- (M + X),

§\ #2M — %) = (M -+ X)(M — X)

S

=M1 —— I
' \"\ ' ' ( *MQ)
Hence (xx¥),becomes :
2\4 -1
j\,irzs'—z(l — ‘3(_)
A

¥

T @MyE-1. B, g)

XE j=1
(‘ - @)

ny=— M (xiY)

‘This is Pearson’s Type II, two of the essential prepertics of which are evident if we put X =0
cr J- M. It is symmetrical and extends either side of the origin from — M to + M. ltis
Low necessary t_g_determine only cne constant 7 In terms of the moments with a view to recog-
msing when it is likely tofgive a satisfactory description of a distribution which is indecd
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symmetrical. - We proceed to get the rth zero moment of the distribution in its most general
form as for the mean in (xxvi} above, viz. : '
CfFaf ot (1 — a1 da
Br = L @t *-1, B(j, k)
o aishtr-1, B(j I'n k)
ARG, E)
__am. B(j+, k)

- B, %)
in virtue of the fundamental propertjr of the Gamma function, i.e. I'(n -+ 1) = nI'(n), this
becomes & : R . — S A oo
- _'a-r_(}'_|'_.;-_1)'{r1 S O\
When § == % as in (xxviii) above : .. AL
o @b — 1 ON
Ky = —'—'—(2] T 1)”} . _.“’}\\_ . L

Henee we obtain \
i+ egeh

BTRe T 2+

AT 'y

S CERVES)

. ) .

We ¢an convert these into mean n'\thénts as in the derivation of the constants of Type III, and

obtain by simple algebra A o

P\ 0 : 3at

My =255 <3 my=U; my = s Ny Ay
AT ) P T IEE 1)+ 3)
Hence we have : \\\

o\ N 8 +1) 6 o

\ “\ ] B, =0 fmdl By = tzj T ?;j =3 . (2]'+3\ . {xxxi)

The constant f is theréfore determined uniquely by the coefficient of flatness, l.e. 1n (xx1x} above
3B 1) : 58, — 9 N

P = L and 1) e KXX11

i~ ™ UV 0 ot

From (xxxi) we see that B, < 3, since j is positive ; but when j is very large Bo o~ 3, so that
both Pearson coefficients of the distribution are almost identical with those of the normai. When
i =1, we obtain 8, = %, and since (j — 1) =0, » is constant for all values of x or X, We then
call the distribution itself rectangular, the definitive Pearson coefficients of such a distribution
being thereforé g, = 0 and 8; = £ in agreement with (iv} above. :

_ The procedure for choosing Type II as a likely fit for a unimodal distribution which is
symmetrical about the mean M, or very nearly so, is to cvaluate f, by determining is second
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and fourth moments. If 8, is less than 3.0, with duec regard to the meaning of 7 as defined by
(xxxii), equation (xxix) then specifies a curve which will commenly deseribe 155 contour closely,
Type II ts important as a descriptive curve for a binomial and also of the hypergeometric dis-
tribution (p. 142) when p = § = ¢. We shall also meet it again in Chapter &,

If j and k are unequal, the determination of their separate values in tevins of 8, and §, is
more tedious. 'The curve is asymmetrical about the mean which we have determined above,
and B, does not vanish, The second Pearson coefficient is fess than 3-0 as fir iI"ype II. Thus
the generalised Beta variate or Type 1 distribution defines a skew curve irore flat than the

normal. As § tends to zero Type I merges into Type I and into the normal as B, ulso approaches
the numerical vatue 3.0.

We can change (xxv) into a form like that of (xxix), if we transfer the oricin to a fixed point
other than the mean ; and it is convenient to choose the value of x at thé “winle, which is the
value of x at which the turning point occurs. Thus the differential coeflicicrt i vero, and

{
D fxt-% (@ — x)%-1]} = 0. O
 — Da N
x = -(}——l— =4 O °. . , . (xxxiii)
k+ 71—2 ""\\

We now write ¥V == (x — A), so that
¥l(g — x)k-t = (4 + V)f-}:;\zh‘ — A — V),
R
In this expression we put B = (a — A4), so that NV

e

Bl . : : ~ - (¥
Nk —2 ( )
oy AR AL
coads1 a—x"“:A’—l.B"-l.(I—!——) (1——) .
( ) N "4 B
By substitution in (xxv) abovg:,\%uthen get the generalised Beta or Type I distribution in its
modal form as ; \J J
P\ V-1, V\E-1
\.. Af—l.Bk—l.(l _) ( .-_._)
5 _ ta) \!—3 I
N BB |

The curve thenj{é:s the range — A to - B,

: 'I.‘he eyalation of j, k and ain (xxxv), hence likewise of 4 and B, in terms of the moments
18 tedious and the relevant expressions are cumbersome. The student who seeks further infor-
mation concerning the Pearson system will find a full treatment in Elderton’s Frequency Curves
and Cﬂ”f?laﬁfm, and will find Chapter 8, Vol. I, of Kendall’s treatise helpful.
. Choice of a Descriptive Curve.—Within the framework of our present discussion which
cireumscribes most of the fundamental curves descriptive of sampling distributions we may
;ummarzse as follows the considerations which guide our choice in the search for an appropriate
orm ;
(@) determine the mean, the seco
hence also Brand 8,;

(6) if B, is nearly zero and B: is nearly

{¢) if B, is nearly zero and
priate than the normal

nd, third and fourth zero moments of the distribution,

3-0, a normal curve may give a satisfactory fit ;
By is less than 30, Pearson’s Type I1 is likely to be more appro-
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(d) if the distribution is asymmetrical, s0 that f, differs appreciably from zero, the choice
depends on the numerical value of By ;

(e} if B, exceeds 3-0 and the mode of the distribution is relatively near the origin, Type 111
will be suitable only if also 8, =~ 3(1 + 38,) in accordance with (xv) ;

(f) if By is less than 3-0, Type I will be our first choice for a skew distribution.

These indications presume that the distribution is unimodal. 'They do not greatly help us
¢ make a decision unless we define nearly in this context. Computation shows that there is
fittle to commend Type I or Type 11l in preference to the normal if B; == 0-1 and B, lies within
the range 2:85to 315, If B, is exactly zero, as is true of the binomial distribution when p = % = ¢
the normal should suffice for most practical purposes if B, exceeds 2:75.  In th oretical statistics
a symmetrical distribution which is steeper (B, == 3-0) than the normal is the\-variate of 7-08,
"This is a particular case of Pearson’s Type VIL O\

If the foregoing introduction to Pearson’s system has whetted the appetite of the reader,
¢he following explanatory remarks will suffice to indicate how to exploré the properties of Type
V1 which itself defines an important sampling distribution, and js.also the parent of Type VIL
Ta 6-07 we have seen that we may specify the complete Beta fudction by an integral of restricted
range (i) and by an integral of infinite range (ii). The intégrand in the former is definitive of
Pearson’s Type I and of Type II as a special case. The integrand of (i) in 6-07 is Pearson’s
Type VI when the origin is at zero score value. Type(VII defines the distribution of the square
root of 2 Type VI score. PN,

We shall have to examine the properties of Types VL and VII in connexion with sampling
distributions which are the theme of Vol. IX3Vand shall therefore defer further reference to
them. In anticipation of an important class of distributions we shall examine in the same
context, the reader may take the opportunity of proving that (x) above defines the distribution
of the square (Q = ¢?) of the critical \ratio, when % = 3} =n. When k=4 and n = }f, we
speak of the Type III distributickrgleﬁned by (x) as that of Chi Square for f degrees of freedom,

Types 1 and II1 alike desogibe skew distributions respectively more or less flat near the mode
than is the normal ; but TypéJdiffers from Type IIT and from the normal in virtue of the fact
that its range is limited. (We can also define a Beta variate of unlimited range by reference to
the alternative form of thé»Beta function specified by (i) in 6-07. This distribution, which plays
a leading role in mopewecent developments of statistical theory, les outside the scope of signifi-
cance tests dealt with in this volume. The Pearson coefficients of any of the curves dealt with
above have valu€s'which may occur in a binornial distribution of the ordinary type, as is apparent
by determi@iing”the moments of the binomial distribution by one or other method dealt with
in 609, TFof the raw score distribution whose definitive binomial is (g + #)*, we obtain

my = 1pq; s =71pg(g —p); ma=3rp¢* + rpg(1 — 6pg).

_(g—p)" a1 —6pg
ﬁl__—__rpq and B,=3+ el

For large values of 7 the two coefficients evidently tend to the same limit as those of the
normal. Otherwise B, — O when p = } = gand f; = 3-0 when (1 — 6pq) = 0, so that p =~ 0-79
or 0:21. For values of p within this range 8, < 3-0 and B, vanishes only when p =0-5. For
values of p outside the range stated 8, > 3-0 and B, is always numerically greater than zero.
A caveat is appropriate in this context vis-4-wis the derivation in Chapter 3 of continuous curves
to describe the binomial distribution approximately when 7 is large. The functions we there
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detived by making ad hoc approximations suggest the form of the Gamma variste or of the Beta
variate ; but the constants in (xviil} of 3-04 are not identical with those of a "I'vpe 11 distr-
bution with the same moments as the binemial. They merely serve to disclose a pattern
suitable for specifying a fitting curve whose moments are in fact identical with those of an
exact distribution.

_ EXERCISE 648
._1. The mean moments of the Binomial Distribution {p -I- @) are as follows (see G.09}:

My =¥ps o my =rpg; my =71pglg — p)y oy - 3P wpy (1~ Upgl

_ Tabulate numerical values of both gy and 8, for (3 «— £, (3 -+ Dyrand (y - Wy {ory =8, 16,
20 arid 100. ) A C N\

. 2. Show that the condition £, = 3(1 + 18,) defined by (xv) is incompéidtint with he¢ relation
?+o=1 | O
- .+ 8, Fit a Type II distribution to the binomial { -+ 4)% and cumfpz'fr‘b the result with the normal
distribution shown in Table II of 3.04. S\

. 4. Write down the first four mean moments of the incomplete I' function v, . ¢ %=t = Pn);
evaluate §; and §, and éxamine the shape which the func{tin\tlikes for n . 4, 1,2, 4 :

% 3
NN

609 MOMENT GENERATING SERIES

The foregoing introduction to. Pearsdn's method of assigning to a sampling distribution a
contimious curve from the area of whith'it is approximately possible to specify the expectation
of a score. value within a particular(range suffices to justify the search for methods of general
applicability to the evaluation af the moments of such a distribution. To materialise a class of
series of special importance with this end in view, it may help the reader if we adhere to our
custom of regarding a stati$tie’as a way of scoring the player’s luck. )
~ Inagame of hazardPwe are at liberty to adopt any system of scoring, if we statc the rule
in advance ; and it is therefore permissible to postulate the rule that the player who gets a raw
score. of x records t‘h'é result as 3. If an ace ranks as a success, a deal of all four aces would
then count 2s §k="31 points. Morc generally, a system which assigns ¢* points in virtue of a
raw score in:\;on’c which we shall call exponential scoring ; and we shall examine what would
then be the tean score of the player denoting the mean * as E(f,) so that for r-fold trials

E(f,) = ?:z‘;yéam.

It is convenient to express this in terms of the natural logarithm of @. We shall therefore write
t=log, a,s0thata = ¢*; and

L . E(fy= i Vet . . ‘ . . @
"When 7 is indefinitely large, e . :

* The symbol E often used for the mean value of a statistic is not the step-up operation of 1.10.
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We now expand e by series integration :

(=] o

L S Ll tixt -
E(fx) = JD }-‘(1 + tx 4 - 51 + T T . )dx . | . . (111.)
Jw'd _ [w' S 2= t..d- R o R
— 1 i t ) . a2 .
0'}_ *t u_yxdx ’ 25,\‘03}‘? :rl

i3 a0 - e . _
. 3 ' i LN : : . . _
Fl%ijoyx dx—]—mLyx_dq: o - ete L
Henee from (x) in 6.01 -
1t ' e i .
E(fx):]uo —|“' }th—i—’u_zﬁ T.Pa.-g! ‘i’ﬂ;-zj —I— -’ ! (IV)
The expression on the right is a'series in which the form of an individual ({Erm is gy the xth
. . S N 2\, X X .
e | . RN _ L
zero moment of the raw score (x) distribution being the coefficient of~,—‘|'. In the same way, we
: . = a1
moy build up a corresponding series by making use of the plag&‘i"s exponential score deviation.
We shall denote the mean by E{fz), so that

F—fip 2
!

- NYE ¢
E(fy) = j . Yt dX =my+ mlti%\m_gﬁ + Mz ete. . . . )
R M . . . . -_“\‘_‘ B L . .. R

In the last expression the coeflicients of # = x! ard E}u’ci:essive mean moments of the distribution
of taw scores. It is customary to speak of F(f,) and E(fz) as moment generating functions.
1f we can discover such a function w.r.t. a distribution of scores (iv) and (v) provide a method
of specifying its moments. N
"The possibility of doing so depengdswon the fact that it is possible to expand any continuous
function as a power scries in the indepcndent variable in accordance with Maclaurin’s theorem
of 1.08. "T'he series we have obfdined is in fact a power series of #, so that we may regard the
functions defined by (iv) and/y) as functions of ¢ itself. - In accordance with the customary
symbolism of Maclaurin’s thgotém, we shall denote by £( f.)o and E(fx), respectively the values
assumed when ¢ itself is zerd by the two required functions which respectively define the mean,
value of the exponential/score, and that.of the exponential scorc deviation. Let us now
investigate their valués by the method used to establish the same theorem. If we differentiate
successively both sides of (iv) we get
m: \ ) d 2 48
N/ E%E(fm):.h+fizf+ﬁbs§!'+f*4§!-—--
42 B : l 2
d_t_zE(fz) == py 1+ pal T P‘QQ_[ -
a3 | "_L. 32 :
) EQE(L)_—_—'F:;TEJ ; Pﬁﬁ'!"'
In general, therefore, - o~ . _ t? .
EFEU?):P”“%’“‘?‘_”';—I_#H'!' ﬁ'i DI

When ¢ = 0, every term on the right hand side vanishes except ., so that

_ R o %E(ﬂf;)ﬁ:}% o ) . (Vi)
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Similarly we obtain

dE(fx)o":mz- C L (i)

If we can transform E(f,) or E(fr} as defined in (i)-(v) into a function suitable for successive
differentiation, we can therefore obtain the xth moment or xth mean moment by cquating ¢ to
zero in the xth derivative of the function. For the definition of the function we have already
obtained the necessary expressions, viz. (i) or (i) for E(f,) and when 7 1s larpe (v) for E{fy),
The formula for E(fy) analogous to (i) is

X
Blfz) -+ 3. Vi e
- Ky
Whether the finite summation formula or the integral form of the fungtic.. is suitable for
the purpose depends on ease of manipulation. The moments of the bingoial runw score distri-
bution are determinable by recourse to the former., Thus (1) bccom;:‘s‘m\

N
EEakd Xm=r

E(fz) = z Y, 67 == z T ¢ " et.v N
- ,'~}\
¢ e! r T, P
% = (Pe) O

(M
The last expression is the sum of the terms of the bmbxnlal (pet + g)7, so that we have

E(fy) = (Pﬂ‘ i

This is the required generating function for the zero moments. By (vi) when £ =<0

d®s
@‘F (Pe‘ -+ g)r -

We shall write this result in the %m
(e +ar],
By differentiating once W ge\:t the familiar result
~ 4
Ol 0]~ [ ar 0]
=mp(p+q) "t =rp =

R )

By successive, d"fferentmtmn we get
DE (B g7 = 1 (bt + 9+ (s — e’ (9 + 1)
D (pet + q)r = rpet (pet + g)7= 1 + Br(r — 1)p2e? (pet + g)r 2
+r(r — 1) (r — 2) pPed (pet + )~ "
If we now set £ = 0 in the above, substituting {p + @)™ = 1 for all values of m
D E(fo=1p +o{r — 1)p? = g, . . . . . . (%)
E(fe=1p A — Ipt i — DN —pr=py - - &
From (viif) and (ix) by means of (xiv) in 6.01, we can derive the 3rd mean moment
My == pg — 3py . pry + 240}

=1+ 3@ — 1p* +r(r — 1) (r—z)pa 3rp(rpg + rip?) + 2rip?, -
=1q(¢ — ) . . T
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The moments of the Poisson distribution for rare occurrences (3.07) are obtainable in the same
way. By definition the range is infinite, and
e M M
Ve =™ —
!
2] -M L -] oo i
E(fm)zg-g CAME L e . (Me)“’.

x! x!
Frum the definition of the exponential function as a power series
b
Sr e
o ! A
= (Mefy*
e‘Mz(?}-ze‘M.exp (Me?) O\
o : e

= ep[Me — 1. O
"This is the required generating function E(f.) for the zero momcnfcs"éf the raw score {x) distri-
bution. By successive differentiation &

D,. E(F) = M exp [M(et — 1) 19
D} E(f,) = (M** + M¢) @W(E‘ — 1)}

The use of the moment generating function ealls for the sort of ingenuity which comes
with practice for those of us who lack genius. S it'will be profitable to consider a few examples
of generating functions with comparable properties. Many books use the symbol G(#) for a
power series of ¢ like (iv) above with the implieation that the coefficients of ¢ have some specified
meaning such as g, in the same equation.™ This usage does not make explicit that our interest
in the generating function resides in &vhat it generates, i.e. in this case ps 'To bring into the
picture both the variable ¢ of w}iﬁ‘.thc parent series is an explicit function and the variable &
of which the offspring is an explicit function, we shall here denote by Gi(f,,) the parental expres-
sion which we expand as a pewer series in such a form as (iv).

The corresponding funtiion E(f,) on the left hand of (iv) specifies the player’s exponential
score, and the function, fg\ﬁrhich turns up as a factor of the coefficient of # on the right hand
side is the xth zero fnoment of the raw score distribution. In what follows f is any function
of x. It need haye'no special relevance to statistics. When we can express the parent series in
a form suitable £or differentiation in accordance with (vi) or (vii), it is a pure function of #, such
as (g + pet)f above. Its relationship to its offspring appears only in its expansion as a power
seties of whith the ath term necessarily has as its coefficient a function of .

To get this clear, let us examine the expression

G(f)=log, (148 . . . . . . (si)

In the above log, (1 + ) is thus the parent function of ¢ which generates f the filial function
of x. The function (f,) is our unknown. To find it we have to use what we know about
log, (1 - £) and about the generating function itself. In order that G,(f,) may conform to the
definition of a generating function implicit in our previous treatment it must be a function
both of ¢ and of f,, and hence also of x, such that

(a) we can expand it in a power series of which (f, + x 1) is the coefficient of &, i.e.

P 3 14
G:(fﬁ:fn +f1t +fa§'| +f3§i +f44_letc' ' ) : (x'l“)
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{b) we can represent it as the sum of a series of products of the thre v ) of which the
factor y, 1s in general a function of x different from fx, sy that :

Gfy S =|ven
u 11
(c) we obtain the value of f by cquating ¢ to zero in the sl derivative (0F) of G(f,)
w.r.t, f itself, l.e. '

el £ BN

What we have done in preceding examples and what we du in general when we want to
find f, the sth moment of a distribution defined by the frequency function . i+ 1 make use of
(xiv} in virtue of our prior knowledge of what y, is in order to express (74 fNS @ ~hmple function

amenable to differentiation. We then obtain f_ by virtue of (xv). "€ Wil i «traightforward
if the product y_¢* is amenable to finite summation or integration Byparts, tn (i) we have
sidestepped the first operation which presupposes prior knowledge of v hot koow nothing
:about the form of the function £, other than what we can infofrofn {xvyas Bellows

DY log (1 4 #) = log (1 + &) N0 when t 0/

D:l log (1 + t) = (1 -k 3)_1 RN 1 diite f]

D} log (1 + H=—(1+172 <~\ .| ditto fu

Dilog (1 +1) =2(1 +¢)-3 SNV 2t dito -/

Dilog(l + ) = —8.2(1 = 1)-* \ " 31 ditto - £

o Drleg (A= (=1t — B4+ - (— Iy i 1)L S
We may thus write f, = 0, and if » > O-3%

o ES e

A AT + . . s \.J “ee . . : 1 .
:lhls 1s evidently consistent wi \qu) and (xiii) from which (xv) is deducible, as we see if we
_=§Ubst_1tute the numerical valugs, of ,, £, etc., as above in (xiii). We then have '

NS 2 21t 3t
pPUR=OT L g o e
AO%..’ . _, 2 .r 3 it

. ':j; — 9 i 3 4 " etc.,
- .\ \ = 10gs (1 -+ t)_ )
' Havi% witnessed the -process of parturition specified by (xv), which delivers the function
{f,) of x out of the womb of G{f,), let us now examine how we trace the parent of the abandoned

offspring, i.e. discover the function which generates f . For illustrative purposes we shall
choose as the latter the function definitive of the natural mumber scrics, i.c. f, =x. Thus
Jo=0,i=1,f,=2f, =3 etc, in (xiii), so that we can specify the parent G(f,) = Gi{x) bY
' 0 1 2 .3 4 5
G m—— f0 L T g1 - g el 44 L 4B
i) TR Pttt +4!r4 - gy ete.

AN S
=04t -+ B 4gybg T ote

. 12 13 14
=t l—l—f—l-‘—,)j +§|+@,etc.).
Gg(-%') = 1¢f,
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We can test the consistency of this result by applying the midwife operation :
Ditety = (te¢' + ey=1 whent=90 f =1
D(tet) = (tet + 2¢) = 2 ditto’ fo=2
Di(tet) = (te* + 3¢') =3 . ditto fa=3
- Di(te?) = (te* -+ xet) == x - ditto f = x
The same procedure is adaptablc to the dlscovery of a generating | functlon for any arithmetic
progression, defined by A, =(A4, + kv). Thus 4, = (A[, = &), A, — {4, + 2k}, ete., and
in {(x1ii} we have ' ' ,
(Ao + 2Ry . (4, ---3k)t‘3 N\
T

Gi(A,) = 4y + (Ao_ + k)t _’f".

S A

We can write this as -

"'i

13
ol
¥

NV R R R
ama:z¥43@—#m2;+ 255
/=2 TR

Gl o [=e] tg:._l
=A; > - L D— :
' D%x! ' kt% r— DL (xvi)
In this cquation _ _ R \ >
o Fid
- — i
%7 1+z 21+ + m —e

o0 tw . 1 Iv&] I2 18 ;
36— 1)!“"(——1)'t*0'+1'Tﬁ st

3
5_(1\¢N+t+§!+§! ... ete

Hence, from (xvi) @

N\& S _
The G.T. of a geomet\m\é'c'ries whose common ratio is # is easily obtainable from (xiii). Since
ot "\‘:"% | ot forte
_e) Wi o3t
\\3 o Gt(fz) = fo + Jurt -+ 21 + ar ete.

. 2t2 3:3
=f0(1 + rt +%'——|—% NN etc.).
Gﬁ(fx) :foeﬂ-

For the simple harmonic series H, = (1 + x5!, we have
HO__l; Hl::%; H'z:‘.l;; ,{'{3:%,61:(3.,

COHYy =1+ E e DT e,

t 5
.G = t—|—21 L +—. . . et

3t
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2 t'l tﬁ
«'-t-Gt(Hx)+1:l+t+2!+ql+ + 5 e
Lt G(H) + 1=¢,

b
- G{H) ="° t

As a final example of this class of generating function, we shall trace the parent of the series of
factorial numbers, defined by the function F, = x, so that (xiii) becomces
G(F)=1+4¢t+ 245+t .. cte
The expression on the right is the sum of a G.P. which is convergent only if |71 is less than
unity, in which case its value is (1 — £)* and N
D; . Gi(Fy) = #l(1 — 1 = sl when ¢ = 0.,
The moment generatmg functions defined by (i)-(v) are e‘camples of a larger vlass of opera-

tions commonly employed in statistical theory. We shall therefore denote G,(f.) «f the previous
section by GXf,) to distinguish it from other generating funct{ms Its basic propustics are

ENAY
Gilf=fo+ fit +f” f.,{t Coete. .o {xvii)
DHGHfNepSYe - -+ - {xcviii)
We may define another type of generating fUIlCthII by the relation
Gi(fs) = fo + fit +fzf2 -1-f3t3 4 fudt .. ete. ) . {xix)

In the above f,, in contradistinction to (fz = a1) as in (xvii), is the coefficient of i°; and we
obtain by successive differentiation se before

& —D’[G (FMewo=fc - -« - - &9
If we now represent by f3 i{i (xix) the frequency function y, of a score x, it becomes
Gg(.')’:) = Yo+t + ya* + ¥t® + . A
Over the range x -Q(}to x == 7, we may write this as
o Gy = 3 vt
3} =1

This is again equwalent to the mean value of the player’s exponential score ¢+ but the
E:oeﬂicwnt of #* in the power series is now the frequency of the raw score x. If the dlStl’lbuthn
1 bmomlal Ty
Gi(ys) = 2. Taq" Pt = (¢ + p1)".
=10

On differentiating (g - p£)" successively in accordance with (xx), we thus gencrate the frequencies
of the distribution

1 d

ﬁ't_ﬁ(q 4 pty =rp(g + pt) 1 = rpg™! when t=10;

1 d —1

Q‘l'aﬁ(q—lupt)r:r(rzl )P2(9+Pt)r_2:ft2}f’2gr_2 when t=0;
1

x!

i ta)
i d_t(q + pt) = 1%’c!"P”({i + POy = ryptqt" when t =0
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The considerable class of generating functions employed in statistical treatises are con-
fusing; and the same author may make use of more than one type. Thus Aitken’s moment
gensrating function accords with (xxvii) and (xxviii) above; and his probability generating
function based on (xix) and (xx) defines a frequency as illustrated by the last example. If we
seek for a function which will generate zero moments in accordance with (xix) it must have the
forsm

Glpy) = po -+ tus + Ppg + 3924
= 1 + tZyx + t2Zyx? + 3 Zyx3, ete.
= Zy{1 4 tx F %2+ 2% . . ).
"This is recognisable as a quotient
1 »
Glu) = Zyy——o- N
(1) Vel " tx

N

R
\

£ we can express the function on the right in a form suitable for differentiation, we therefore
olxtain g, by setting ¢ = 0 in the kth derivative with respect to ¢ and mulfiplying the result by
&t as indicated in (xx). : N
By implication in (xiv), but without explicit statement, we have here defined a generating
rower series of either type as either a series of a limited number efterms reducible to the definitive
function Gy(f,) by finite summation, or as an infinite series which we can represent by a definite
integral. It goes without saying that the midwife operatiof’is equally applicable to either, the
anly difference involved being that f, has an upper lindig’set by the range of x. '

EXERCESE 609

1. By successive use of the chessboard device examine the meaning of a frequency generating
function w.r.t. the a-fold sample from a 4-§ass rectangular universe.
s\ J
2. Evaluate the moments of the%exponential distribution y, = ce~** for ¢ > 0 and » from 0 to
. Hint: take |2] << C.

3. Rig up a generating fungtion for the mean moments of the normal distribution. Hint: put

) X2 Vi
‘.\Qg%(r){ — QT—/) = exp [— (Vi— X): -2V + = |

..\‘"

e A

\¥
610 MOMENTS OF A DIFFERENCE DISTRIBUTION

£

If = is some function of 4 and B, two variates, i.e. scores of two sets each with a specifiable
frequency distribution, we may speak of it as a score function which is itself a variate, if we can also
discover a law of its own distribution. So far the only score function we have dealt with is that
of the difference (d = 4 — B) of two binomial variates in the taxonomical domain, In Vol. 11
we shall introduce an economical notation to describe the frequency of a score function of two
variates from considerations of a grid lay-out comparable to those of Figs. 46, 47 and 78 with
or without the condition of statistical independence, i.e. obedience to the product rule of 2.06
as there assumed. In this context, however, we are ready to approach a dilemma we had to face
in 4.05 and 4.08 from a new viewpoint. We there saw that the chimney landscape (Fig. 50)
of the histogram for the proportionate score difference distribution w.r.t. co-prime samples
assumes a contour (Fig. 51) suggestive of a normal fit if we coarsen our scale by grouping adjacent
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d-score values in equal intervals. Indeed, computation shows that a normal fit is satisfactory
for the end in view, i.e. summation of frequencies within a given range, even when the size of
neither sample is large.

If the exact value of the frequency of any single admissible d-score Is irrelevant to the end
in view, a continuous curve which fits the condensed histogram is for practical purposes what
we seek ; and we can explore the properties of such a curve by recourse to the mictbod of moments
without violating the assumption that the exact distributions of the parentscores 1, and uy =(ug1-d)
respectively tally with successive terms of the binomials (g =~ p)* and (¢ . p}’. "t loso, weneed
first to establish a procedure which enables us to specify the moments of the distriibution of the
difference between any two independent variates in terms of thelir own memeais. _

Here we should remind ocurselves that the difference between two proportionate scores of
samples from the same universe is also the difference (p. 166) between thid Qe eeponding pro-
portionate score deviations from their common mean.  So it will he S’i.m{\)]cr, if e confine our
discussion to two sets of sample score deviations (4 and 1) whose, mt\:i'm values are zero, and
we have already seen that the mean of the d-score of sample pairs i Hien zero by (vit) and (viil)
of 404. If we use the convention M{a*) for the mean valug Gf the rth power of any score ¥
whose mean value is zero, our definition of the rth mean momet, #n, (x) of the x-score distribution,
then implies that m,(x}) = M(x"), 1.e. \N%

mid) = M(A? —24B+ B, . . . . - -
md) — M(A® — 34*B +8A8* 8% . . . . . (@
my(d) = M(A* - 4A°B {N6AB: — 44B* L BY) . . (i)

From the definition of the mean and by recourse to Figs. 46, 47 and 78, the rcader will see that
we can write the above in the form N

mfd) = M(A?) — 2114@35 i M(B?) = my( A) — 2M(AB) -- myB)-

But we have already establishe&\iﬁhét mfd) —= Va=V, 4+ V, =mi4) I m{B) when the two
variates are indcpendent. Subject to this condition, M(AB) =0, as is deducible from the
chesshoard lay-out whenth€/two sets of sample scores are in fact independent in virtue of the
relation exhibited in Figh78, viz. M{AB)= M, . M,, since M, = { == M, if we measure the
SCOTES as dcviations\ffg}xﬁ their mean. The rule which Fig. 78 demonstrates is a particular case
of a more gencz:a](i‘e ation w.r.t. products of independent variates, ziz.

AN M(A". B» = M(Av . M(B™ . . - - ()

\¥
The truth ‘sf this is evident from a consideration of the grid set-up in Iig. 78, if we replace Ags
A, etc., by A% A% as the column border scores and B, B,, etc., by Bf, BT, ¢tc., as the row
border scores. If we denote by A® with frequency #, and BP with frequency - the border
scores of columd ¢ and row r, we may write for the weighted sum of the products in the rth

oW

- v, A BP + o, ABP — w0, A8B . . . etc.
= 0. B Ap <, AT -+ u, A L L L etel)
= v, By . M(A").

When we sum the row totals weighted by the row score frequencies, we have :
= M(A")v,BP + M{A"),BP 4 M(4™)v.By . . . etc.
= M(A) e, B 1- 0,BP + ©,BP . . . et

- = M(A%) . M(B™).
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When 4 snd B are score deviations, (iv) then becomes :
M(A*B™) = m (A, (B) . . : A 7]
Since the first mean moment 18 zero it also follows that
M(Ar. B) =0 = M(4 . Bm).

Thus {ii} becomes :

nod) = M(A%) — M(BY) = myd) —m(B) . . . - (i)

Likewisce (131} becomes :
my(d) = my(A) + 6V, . Vy + m(B) . . . . . {wii)
We can now define as follows the Pearson coefficieats for the distribution of the difference of
two indepsndent variates measured from the mean ' ~
Ay — my( B)]*
B = () "(3)] . . . L\ - . (viii}
(Vo + V) ~\
A+ 6V, . Vy + myiB ™ .
8, — mai(Ad) + A «B) PN O ) . (®)
(Vo + Vo) ”

7 '\ 7
"I'he moments of the distribution of a score deviation are the sanfe; sithose of the corresponding
score since the mean value of X in (viii) of page 231 is zero, and\the kth moment of the propor-
tiongt= score distribution of an r-fold sample is obtainah]g\}lnm that of the raw score if we
multiply the latter by 7% in virtue of the substitution ge={x + 7) in (x) of 6.01. Thus the
morments of the proportionate score deviation distributiett of a binomial variate of degree r are

on the right below o0
N proportionate score and
raw score and raw score deviatioy - proportionate score deviation
' P
g TP?’\\ .
N 29(a — 1)
2bela —9) -
N2
9, 3rpig® + pe(1 — 6pg)
my .“gi'?ﬁﬁgz + 7pg(l — Gpg) e .
Whence if 4 and B&ré propaortionatc score deviations respectively referable to a-fold and
b-fold samples @ . a4 b
~ my(d) = »q-

\m3 ab
2 ._ p2

my(d) = fw??@ — P

Sprgi(a -+ B)? | (a°+ B9pa(l — 6P0)
my(d) = "P—i—gjs—" + ab . b? '

Thus we obtain for the distribution of the proportionate score difference w.r.t. a-fold and b-fold

samples ; (a8 (g — 2 . } . . . - (X
ey S
a® —ab b2 (1 —6pg) S ¢!

Bo=3+ m i p
18



274 CHANCE AND CHOICE BY CARDPACK AND CUHESSLOARD

Evidently 8, becomes zero when either g == bor p == ¢ ‘mfl the factor (]
zero in the neighbourhood of p = 0-79 and 0-21, so that g, is then exactly 2

(1 —6pg) = pg

is a minimum when p = {1 = g and 15 then negative, its value being 20§05 positive when
p > 079 or <« 0.21. If the parent samples are of equal size and p has the vl near 079 ot
0-21 when {1 — 6pg) vanishes, the Pearson cocflicients of the ditference al' Seninom are then
exactly equivalent to those of the normal.  How closcly they tally :}t}u-r-\\,--.\- depends on the
relative size of @ and &, the relative magnitude of p and ¢, and the ahsolute vz Lo or ) of one
or other sample. To explore the measure of agreement and in what l'lll'_l_‘II[.‘.-W.!'ij_'i'.‘-‘. we might
expect a Type I, Type II or Type I1I curve to give a good fit, it is convenivii o chunge (x) and
(xi}) by the substitution @ = kb and ¢ = mp. We then have

(A — 1)%(m — 1)

Cigiin B, becomes
Vv factor

(k= ke 1)(1 .\:;s;,.:-_l,=, '

— 1 o 3 = 4 “ . . Xl.l)
ﬁl mk(k T l)b {ane ,8~ ' f\‘.’.’f(!"\‘ \1}:};,.. (
As an exercise the reader may profitably investigate the Tast ctitns by w.wiyraisw numerical
. \
values to k&, m and b, wiz. : NS
DEk=12...5 signifying that one sample is ('\quul to the other, or voioe L, . five
times as great as the smaller of the two ; D
(i) m =1, 2,4, 9signifying that p = £, 3, 1380,
(ii1) the smaller sample consists of b = 16, 25,"50 items.
EXERCISE 6.10
X“'Y\
.\\~~]\(IISCELLA1\ EOUS
1. For the normal distributjb’n, show that m, = 15V'3 and m, — 105"

AS
2. Show that Pearson’$

I'ype ITT has no mode unless # — 1 consistent with the understanding that
x is positive. M

N

3. Repeat thet £01'8g0ing development to obtain £y and g, for the raw score difference.
S
1 Use\he} foregoing procedure (8.10) to show that B, and B, w.r.t. the raw scorc difference of
0

a-fold and b-fold samples from the same universe approach their normal values more quickly than do
those of the distribution of the (@ 4 b)-fold sample.

5. In 6.08 we used g, to dctermine my for Pearson’s Types [-I1I.  Could we appropriately use
the right-hand ex

b pression of (xi) in 6.01 by recourse to their equations with means as oright 7 It not,
why not ?



CHAPTER 7

THE RECOGNITION OF A MEAN DIFFERENCE
(FOR LARGE SAMPLESY) '

701 Two METHODS OF SCORING

Wt has gone before is an attempt to materialise a calculus which began at the gaming table.
To date, our contact with practical affairs has been with the class of problems which statis-
ticians commonly refer to as the sampling of attributes. 'We now enter a new domain of statis-
tical problems ; but we shall still adhere to the view that a statistic is amenable, to'visualisation in
so far as we interpret it as a particular method of scoring the player’s kickZ) The customary
distinction between sampling of attributes and sampling of measurements/draws attention to a
very real distinction between two classes of statistics ; but the form &f'‘words blurs what is the
most essential difference. It suggests an antithesis between quali€y’ and quantity or between
discrete enumeration and a metrical continwum. What is really)important is to discriminate
between two methods of scoring a sample in contradistinction\d ‘scoring an éndividual member of
a sample. For want of terms in general currency we hefédistinguish them as faxonomic and
representative. O

Hitherto, we have classified sample scores as riw scores, score deviations, proportionate
scores, square scorc deviations, or—more exotigally—exponential scores (p. 265). In doing
s0, we have merely used numbers referable iftone or other way to how many members of a
specified class a sample contains. Scoring of :ﬂﬁs sort is the cssence of what statistical works
call the sampling of attributes ; but an attribute chosen to label a class as such need not be
qualitative in the all-or-nothing senge,\like the class which consists only of picture cards
or the class which consists only of ﬁc{ﬁb‘s. All cards with seven pips or all cards with less than
three pips, regardless of suit, constitute such a class in its own right, as do all new-born babies
weighing 53 Ib. or less, all ownéts of Amcrican cars purchased at cost price under two thousand
dollars, all hospital patientsgith less than 3,000,000 erythrocytes per c.mm. of blaod, all farms of
under 200 acres, all civilsérvants with a salary exceeding £1000 per annum, and all university
lectures lasting longe;)&a"n 50 minutes. ‘Thus the pivotal peculiarity of this method of scoring
has nothing to do_with whether we employ a qualitative or quantitative epithet to label the
individual membéiof a sample as onc of a particular class. It resides in the fact that we score
the sample by epumeration of individuals assigned thercto ; and we here spezak of such scoring
as taxonomic because the score itself is 2 number which specifies the size of a class.  If the class
is itself definable in terms of a numerical specification of individuals assigned to it, such numerical
specification has nothing to do with the sample score value. It is merely a ticket which entitles
the holder to rank as a member of a class or excludes one from doing so.

Commonly, our universe of taxonomic scoring has only two classes ; and any member of it
then. has one of only two possible scores, being unity or zero according as we deem the result of
choosing it a success or otherwise. Thus we may define a successful draw of one card from a
pack without picture cards as an ace ; and if so the score we attach to a card with 2 pips, 3 pips
. . . or any greater number of pips up to 10 is zero. If we define a successful 1-fold draw as a
card with over 7 pips, the score of cards with 8, 9, or 10 pips is unity, and that of cards with 1, 2
. . . 7 pipsis zero. The score of a 3-fold sample would thus be 3, if it consisted of any of the

following combinations
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® B ®); @B ©; @) 10); YO ) (8 () (i
8) (10) (10); (9 () ®; (©) (9) (10); (9) (10) (A%); (10) (16 (10).

On the other hand, we should score as 2 the combination {8) {7) () with the same total
number (24) of pips and the same mean (8) as (8) (8) (8). Though we use the sumber of pips
on the cards to define how we score a successful draw, the taxonomic sample seove has therefore
no essential connexion with either the total or the mean number of pips on e cards which
make up the sample ; and any card whose denomination 1s 7 or less pips naies wo numerical
contribution to the sample score.

In contradistinction to taxonomic scoring so defined, what we here vl sepresentative
scoring attaches as a numerical specification to a sample a representative hgure 1 which every
individual member of the sample makes its separate contribution 1n virtue, ghlis own score.
Such a representative figure may be a sum, an arithmetic mean or other gvvlicr such as the

median, i.e. a count or measurement characteristic of the mid-member of Sl wae:ple of items

. . . . Y 45\ - .

arranged in order of merit. Ipso facto, representative scoring explicitly wssicie w numerical
score to any item of a sample and to any item of the universe.  Anghelass withis i latter, or
any class within a sample, consists of items each with the same jadividual scor v consecutive

range of individual scores, If the representative score definitive ot an r-fold suaipée 's the sum
(s) of its constituent individual scores or is their mean (s =\ that of the sample o3 ane item

{unit sample) is therefore itself an individual score. \\

If the representative score of an r-fold toss of asabical dic is the sum of the sees of the
7 individual tosses, the possible 16 score values of a 3¥0ld toss are 3,4, 5 . . . i7, 13, Ifthe
representative score is the mean, the corresponding’ 16 values are 1, 1-8, 1-6 . . . 5, 6, the
limiting values of the distribution of mean scofes being always the same as the lniiting values

of the individual scores, in this case 1, 2 . B8, of the items which make up the aniverse.
The members of the class of 3-fold samples defined by a mean score of 33 frow the G-class
universe of such a die are severally distinguishable in virtue of their individual scores as any of
the following combinations whose sepre-sum is 10 :

M 6); MBE Q) E);: @EE); @®HE; GO

That we can so score the'tesult of tossing a die is not an intrinsic peculiarity of div models,
nor is it the only way il\wﬁich we can do so. We employ the taxonomic procedure to score a
10-fold toss of a coinhen we classify the result by the number of heads uppermest.  [n the
same way we can assign a score to the result of a 10-fold toss of an ordinary cubical die by enum-
erating whethet"91, 2 . . . 10 sixes fall face uppermost. ‘This would be a taxonomic sample
score comparable with scoring a single toss of ten cubical dice with red, orange, vellow,
green, blue and violet faces by the number which fall blue face upward ; and the mere fact
that we distinguish individual faces of the coloured die by a qualitative specification does not
exclude the possibility of scoring by the alternative method, the result of tossing it. If the
colours are monochromatic, we can. assign a characteristic wavclength to cach, and e can then

§001:e'the 10-fold sample by reference to the mean, median or other index represcutative of such
individual scores,

NOTE. It may dispose of a difficulty which will occur to some readers, if we take stock of a model
S}mation to which a clear-cut distinction between the two types of scoring does nof apply. If a flat die
like a penny has one pip on one face and no pips on the other, 2 face score of 1 may he taken to signify
1 success. TFor the unit sample (single toss)  or 1 successes correspond to score sums of ( and 1 with
frequencies 0-5 and 0-5, and to proportionate scores or mean scores of 0 and 1. Likewise, score-sums
of and 1 and 2 successes in 2-fold tosses, and corresponding mean scores of 0 and 1 and 1, have



THE RECOGNITION OF A MEAN DIFFERENCE 277

frequencies 0425, 05 and 0-25 respectively. The same correspondence applies to samples of any
size ; but only because: (a) the universe is a binary universe; (b} the same numerical symbols @
and 1 respectively label the possible taxonomic scores of a single toss and the possible individual score
values of the unit sample in the universe of representative scoring. In fact, the correspendence would
brezk down if two faces of the die respectively carried one and two pips. Individual scores of 1 and
2 would then correspond to { and 1 successes or vice versq according as two or one pips label a
success as such.

Needless to say, we have to rely exclusively on the taxonomic method of scoring a result,
if it involves the type of all-or-nothing phenomenon which admits no numerical assessment of
an individual member of a sample. 'This is so when we classify individual human beings as
normal and tuberculous or as red-haired and otherwise. It is also so when we classify peas as
green and yellow or as round and wrinkled ; but it is not so when the focus.of our interest is
what makes pea plants or human beings tall or short. We are then at liberly to define our
samples in either of two ways. For taxonomical scoring of simples we ,r{i:l‘y\deﬁne a tall man
as a man, let us say, 5 ft. 8 in. or over, and a short man as a man under 5 ft. 8in. 'We then
specify a sample by how many of cither class it contains or what ptoportion of the sample is
assignable to one of the two classes. We adopt the method of; tepresentative scoring, if we
assign 2 mean or median height, e.g. 5 ft. 5 in. or 5 ft. 9 in., as the sample score. In the practice
of physical anthropology, blood group maps invariably referto taxonomic scores and cephalic
index maps commonly specify a geographical sample by/afepresentative score, i.e. the mean
value of the population. )

In the domain of useful activities, statistical problemis often leave open the choice of scoring
to the discretion of the investigator, as when wewish to investigate the effect of two diets,
A and B, on the growth of a child, or on theired blood cell count of a patient. We use the
taxonomic method of scoring the result, if %é state the problem. in the form : what proportion
of infants on diets A and B respectivelyzattain or fail to attain a weight of 3 stone, or what pro-
portion of patients in each treatment grup have more or less that 4,000,000 red cells per c.mm.
of blood at the end of the period ofibbservation ?  We use the representative method of scoring
if we state the problem in the form : what are the mean weights of infants or what are the
median red blood cell countsyofitients after a specified period of treatment with diets A and B #

Either way, we adop-g.quantitative criterion to specify the class to which we assign any
member of a sample, and'whcther the criterion is enumerative (i.e. necessarily discrete} or metrical
(i.e. presumptively qq&&fiuous) is not peculiar to one or other method of scoring the sample.
The essential difference does not depend on whether we count objects or apply a scale to measure
them., It residcs"édlely in what we counf. When we adopt the taxonomic method, we count
individual itérg of the sample. When we adopt the representative method we count blood
cells, scale divisions or some other numerically specifiable attribute of each individual, and
specify the sample by a figure which is representative of all such counts. Thus the taxonomic
method takes no account of individual variation within the classes which define its operations.

Whether this is an advantage or otherwise, is not a mathematical issue. When we set out
to detect a biological difference, our concern may be to assess the influence of an agency which
presumably exerts a clear-cut effect only on a particular genotype, or it may be to assess one
which exerts a detectable effect without discrimination on all members of a sample. If our
objective is to bring into focus a threshold effect, i.e. a difference of the first sort, the taxonomical
method is likely to prove the more suitable. Otherwise, it is likely to be less sensitive than the
representative method. Where one method provides an unequivocal answer to the question
which prompts us to invoke it, the other may fail to do so. Which is more appropriate depends
on the question itself : and it is often instructive to compare the results of scoring both ways.
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702 TaE UNIT SAMPLING DISTRINUTION

Hitherto, we have examined the impheations of detecting a real ditereee (Chapters 4

and 5) only when the method of scoring s taxonomic.  ft has heen convenicns 1o 4o so because
the specification of an appropriate card pack or other mode! for the distribinti s vnlved raises
no difficuities of a sort we have now to mect.  Our new difficuitics o it ariae from the faet

that the mathematical problems of representative scoring arc mtrinsically owire sophisticated
than those we have dealt with hitherto. "I'hey arise from an mescapable medicnn:

of uncertainty
about what we can legitimately postulate as a basis of mathematical analyyis.,

To define the distribution of the score of an r-fold sampie or the seore ditlerence with
respect to different samples from one and the same universe or from ilentival UBIVOTSCS, We
have to make certain assumptions sbout the universe or universes invelvedN What we shall
henceforth call the wnst sampling distribution summarises all the informmtd ricvant to our

purpose, The unit sampling distribution is a specification of the pl‘(!]j’h‘l\ﬁll] e itetis of cach
class in the parent universe, As its name implies, it also specifies the fede-run frequencies with
which we extract different classes of one-fold samples.  An essengfal ditlcrence hetween taxo-
nomiic and representative scoring arises because the former neeeS§arily entails detinite informa-
tion about the unit sampling distribution, whercas the atter NS ot

* When we adopt the taxonomic method of scoring we ushially assign a hinary cluss structore
to the universe, sa that I-fold samples can be of only twhﬁinds, respectively defined by a score
x=0orx =1 with corresponding frequencies y zsM— p)and 3 - po The exact numerical
vatue of the fraction p may be implicit in our null kypothesis, as is true of Mendel's Laws, or it
may be a matter of conjecture, Either way, thg'(}’!gebmic Jarm of the unit sapling Cistribution
13 fixed by the fact that the class-structure @fithe universe itself is binary ; and the precise
numerical value p assumes in a particular gireblem is irrclevant to the algebra of the card pack
model, except in so far as we rely on approximations whose validity depends on the assumption
that p is fairly large or very small. .\

Given a two-class universe spcificd by the unit sampling distribution » ¢, v = {1 — p)
and x = 1, y = p, the chessboard device prescribes the appfr)priatc binomial distrihution law
for raw scores, proportionate(8¢tres and score deviations of independent samples from an in-
deﬁm‘tely l.:alrge or a finitg miverse, and suffices to clarify in what circumstances the normal
equation gives a satisfaetory approximation thereto. Given the distribution law for sample
scores, the random ‘d\tstribu‘r_ion law (Chapter 4) for the difference between scores of paired
samples from the same two-class universe follows as a logical superstructure, which needs no
adchtior}al empirfeal information to sustain jt. The only empirical issuc which enters into our
calculfmons is the appropriate numerical value of the fraction P.  An assessment of the risk of
1TOr 1 assigning such a value is possible, as we have seen in Chapter 5.

Wh.en the method of scoring is representative, the logical issues raised by the detection of
.a-.reall difference are much less autonomous. In general, such scoring presupposes a Universe
in which the number of classes is very large.  If every item has a count (¢.g. income) or measure-
ment (?-g- l}eight) peculiar to itself, we may then be able to assign to every item a rank score
which is unique in virtue of order of mersz » and all such scores have equal frequency. We then
say that the unit sampling distribution is rectangular, as is that of the cubical dic which assigns
:':l-frequency of one-sixth to scores of 1 to 6 inctusive. Otherwise, we have no information about
1t8 algebraic characteristics apart from what we gain from cxperie,nce of large samples. Lo that
extent, every probl§m involving representative scoring other than scoring by rank is a problem
sut generss.  No logical nece:e.sity prescribes the algebraic pattern of a unit sampling distribution
with respect to stature, weights, incomes, body temperature, red-cell count, metabolic rates,
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plasma volumes or length of life. In this context, examination marks or arbitrary numerical
grades which do not correspond with divisions on a universally recognised scale are on all
fours with scale and dial measurements of which we customarily postulate continuity of
distribution. Measurements in general enjoy no special uniqueness on that account. It is
arguable that Time, the father of Newton’s fluxions, is the only metric of which we are entitled
to postulate continuity in the most exacting sensc of the term.

At this point, the prospect would indecd be bleak if we had to rely on logic alone. Happily
for the statistician, nature follows the Fabian path of the middle way. Expcrience of large
samples of an immense varicty of counts and measurements shows that they are apt to cluster
round 2 fashionable value, from which large deviations are increasingly less frequent. In short,
many unit sampling distributions of natural phenomena amenable to numerical specification
tally very closely with the Gamma or the Beta function of which the normal is a limiting case,
and many sorts of variation are amenable to a unit sampling distribution law of\the normal type
by recourse to methods of scoring, e.g. intelligence quotients, devised witK_phat end in view.
While it is therefore truc that detection of a real difference based on reprg@¢ntative scoring pre-
supposcs the validity of an empirical assumption which is not always.Jegitimate, it is also true
that the investigator of natural or social phenomena is often able to deside’ whether it is applicable
to a particular problem, if sufficiently at home with his (or her) material.

it is none the less important to recognise that experiénge alone is the arbiter; and no
satisfactory statistical treatment of measurements can suppoft its weight on a foundation of
logical necessity alone. Oddly enough, the assumption of-a normal unit sampling distribution
first cstablished itself as a fashion in a domain in whighlits credentials are most open to crificism.
From arbitrary assumptions about the distribution Bf instrumental errors, manifestly false in
certain circumstances and at best a very grosg @pproximation to the exigencies of laboratory
practice, Gauss deduced a normal law of digtitbution without recourse to the binomial expan-
sion. Ever since his time, it has been a fashion to assess the significance of differences attribut-
able to errors of observation by recoursg\to the probability integral or other method involving
the assumption of an indefinitely large.humber of different values which errors involved in one
and the same experimental operation may assume. How grossly the conditions of experimental
procedure falsify the assumptipmthat errors of observation necessarily conform to any such law
would scarcely merit comment; if the practice were no longer widespread. Since it is still
common to assess the sigrfifieance of differences which entail errors of ot{servatioln in accordanc;e
with the Gaussian Ia\ﬁ{\‘t‘xfc issuc is of sufficient importance to call for illustrative comment in
this context. o

We shall suppose that we are comparing the calcium content of two samples of blood by a
volumetric miere*method of estimation. Our null hypothesis is that any difference of the mean
values of a ser¥és of titrations of each of the two samples is atiributable to instrumental error
alone. We reject the null hypothesis, if we can show that the expectation of the :obscrved
difference is very low ; and to do so we have to know the distribution law of the mean difference.
Whether we are entitled to assume that the law is normal is an issue which admits of no dubiety,
since we know all the possible sources of instrumental error over which an experienced labora-
tory worker has no control. The sizc of the last drop which falls from the orifice of the burette
uniquely determines which scale division defines the end-point of the reaction in the titratipg

flask, and the size of the drop which the orifice of a pipette admits uniqucly defines the quantity
of fluid therein. What the investigator cannot control may result in readings which range over
one, two or three, or perhaps four scale divisions, but an indefinitely large number of deter-
minations of the same sample from the same source can ring the changes only on a small number
of the infinite range of scale divisions implicit in a normal unit sampling distribution of errors.
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While the foregoing illustration emphasises the need for common sense it the choice of
statistical techniques, and the pitfalls which besct such choice in the absence of 4 clear apprecia-
tion of assumptions inherent in their mathematical credentials, we need not theow out the baby
with the bath water. If statistical procedures which invoke comparison of wverioes and other
Tepresentative scores presuppose the validity of assumptions which the mathenstician has no
proper authority to impese on the initial statement of the problem, there are in fact many
situations in which experience does justify particular postulates prerequisiie te mathematical
aralysis. In particular, many assemblages of individual counts and measurenents in nature
admit of sufficient variety and range to invite description by recourse to a norinal unir sampling
distribution without serious error ; and the goodness of fit of such a distribution «ften Justifies
the conjecture that assumption of normality will not lead us far astray.  Such wn assumption
can never be exact in so far as it presupposes an unlimited range of individudl variation ; but
error arising from the circumstance that we encounter adult men as shoptas 2 fnclios or as tall

as 20 feet only in Gulliver’s Travels may be negligible, because the arca thieltails of Uie Gaussian
(i.e. normal) curve is a negligible fraction of the total arca. AL

We can carry over much of the mathematical apparatus appropriale to one domain of
scoring into the other domain; but we can fully appreciate whén it is proper to du so only if
we clearly recognise where one domain ends and the other bégms. Because it is possible to do
80, statistical theory employs terms, such as random varidble, normal variate and the like, to
describe distributions in virtue of mathematical propértics having more or less relevance to
both types of scoring ; and it will be profitable to)¢farify the use of such terminology in this
context. In Chapter 3 we have seen that the r-fofg sample score of very large samples of items
taken from any two-class universe with replagdifient is approximately normal, and <xperience
may also show that samiples of one item taken\from a universe of a very large number of classes
each with an individual score assigned to itfinay also be approximately normal, '['o this cxtent,

we may speak of a score of either sort ag's normal variate, an expression applicable to any set of

scores with which we associate a norinal distribution regardless of whether it is that of an indi-

vidual item like that of the unit sample in the representative domain or of a large collection of
individual items each of whicl( tan have a taxonomic score o

Thus a normal variate 188imply a score to whi

& ‘ ¢h we assign a normal frequency distribution.
As such, it is any quantityswhich we can regard with propricty as the independent variable of
the normal function, 4

nd“as such has properties inherent in the nature of the latter regardless
of the status of the Sl%rc itself in the world of practical affairs. One such property sct forth in
4.08 and 6.10 is.that the difference between two such scores of independently selected a-fcld
.and b-fold f,ax(ipTes Is itself normaily distributed with variance Ve (V, + JV;,). "I'ranslated
Into the language of everyday affairs, this may be approximately true of situations (inter alia) as
unlike as : (a) the distribution of the difference between scores of pairs of very large samples
of specified size independently selected from a single two-class universe ; (8) the distribution of

t};e ;hfference between pairs of single samples from the same universe with a very large number
of classes. ’

f only zero or unity.

703 Tux REcTancuULaRr UNIVERSE 0F THE CUBICAL DIE
The simplest issuc of

' practical statistics in the representative domain is the detection of a
difference between two

SCOTe averages, as when we ask the following questions :

(@) in terms of hours of sleep gained, is the dextro-rotary form of a drug a more cfficacious
soporific than the leevo-rotary form ?

{b) are beans of one Pure line on the whole heavier than beans of another ?
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Fiez 61, Sampling from a Rectangular Universe g:.ri’z‘it:feplaccment. Derivation of the mean score and score sum
distribution of the 2-fold sampletof the 6-class universe of the cubical die.
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{¢) is the ecosinophil white cell count above the normal in patients suffering from

bilharziosis ¢ \X/

In all such situatior}s} we may appropriately score the two groups of individuals subject to
comparison by refer Jeé to an average count or measurement ; and in this context, we shall
assume that the pifs.:rticular average we employ is the arithmetic mean. In general, we do not
expect to find ¢ghat all individuals of either group we are comparing will have identical individual
scores, 1.¢. folrs of sleep, weights or blood counts, as the case may be ; and we shall therefore
expect to find that mean scores of different samples of a particular specification, e.g. Bilharzia
patients or beans of a particular pure line, will rarely be exactly equal. Our null hypothesis is
the assertion that the difference between the means of twe groups subject to comparison arises
merely from the circumstance that the two groups are different samples of the same universe.
Accordingly, the question to which we seek an answer is : would a difference between the mean
score of two samples from the same universe as large as the observed difference between the mean
scores of our control and experimental groups be an exceedingly rare occurrence ?

We can answer a question of this sort only if we are able to define the distribution law of
the mean score of independent samples from one and the same universe, i.e. the frequencies
of particular mean values of samples extracted from a single universe. Nothing we have dealt
with so far offers an answer. To clarify the question itself, and the logical approach to a satis-
factory answer, we shall first explore the mean score distribution law of 2 model which is already
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\§
familiar, albeit of little relevance to problems of reallife. In doing so, we adhere strictly to the
laws of electivity({Chapter 2) which dictate our procedure when the method of scoring is taxo-
nomic. The“product rule prescribes the frequency of a particular set of individual scores;

and the addition rule prescribes the total frequency of sets whose sum or mean value conforms
to a particular specification z.r.2. range.

sl sCOTC sUm

The chesshoard device permits us to set out each permutation of the double toss in Fig. 61,

and hence the long-run frequency of any double score sequence.  Two such sequences (double-
ace or double six) are unique in that the score sum

6 respectively) associated with them cannot resul
score sum from 3-11 inclusive can resglt
sum of 5 in a 2-fold toss can result from
3, 2. Thus 4 out of 36 permutations o
sponding mean score of 25 (= 5 = 2)
6. Accordingly, the fre
0027 (=1 + 36)

(2 and 12 respectively) or mean score (1 and
t from any other arrangement. Any other
from at least two arrangements. For instance, a 5c0f¢
the following score sequences : 1, 4and 4, 1; 2,3 and
f the 2-fold toss signify a score sum of 5 with a corre-
and 1 out of 36 signifies a score sum of 12 with a mean of
quencies of mean scores 25 and 6 are respectively (-1 (= 4 = 36) and
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As in Figs. 62-63, we set out the 3-fold toss by recourse to the chessboard with due regard
to the fact that every 8-fold score sequence is deducible from the result of every possible 2-fold
sequence and the result of every possible single toss which can follow it. Having clearly visualised
ihe lay-out in terms of our basic definitions and rules of electivity, we can proceed thercafter
to deduce the distribution of 4-fold, 5-fold, etc., tosses by the more economical procedures
embodied in the schema of Table 1 for the 3-fold and 'Table 2 for the 4-fold toss.

Tor even values of 7, it is most cconomical to lay out the results of successive fr-fold tosses
as in Table 2, and for odd values to obtain the (2r 4- 1)-fold toss distribution by combining the
results of 7 and of (r -+ 1) tosses, recording score sums and relative frequencies separately as in
Table 1. To obtain the frequency of a given mean score value we then proceed as follows.
In a 4-fold toss, a mean score of 1-5 corresponds to a scorc sum of 6 in the lower half of Table 2.
T'he relative frequencies obtained by applying the product rule in cells of the\corresponding
diagonal of the upper half of the table are 3, 4, 3. By the addition rule the tofal frequency of
a mean score of 1-5is (3 4 4 + 3) + 6+ = 0-008. R\,

We can investigate the law of the distribution of a mean score difference w.r.t. samples of
the same size or of different sizes by essentially the same method ag"set out for pairs of 2-fold
tnsscs in Table 3. The student will find it belpful to make up ex\efg:ises for solution by recourse
to it, like those of Exercise 7.03; and to investigate the patteffy'of the difference distribution.
That of the distribution of the mean score in y-fold samp\leg from the rectangular universe of

N
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TABLE 1

The 3-fold Toss

CHANCE AND CHOICE BY CARDPACK
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TABLE 2
Derivation of the 4-fold Toss Distribution

(a) Relative Frequencies (=3 X 6%

2-Fold Toss
Seore sum 2 3 4 3 i1 7 8 9 10 11 12
Frequency i 2 3 4 5 8 5 4 3 2 1
(X 36)
2 1 1 2 3 4 5 6 5 4 3 2 1
3 2 2 4 8 8 10 | 12 | 10 8 6 4 2 i
4 3 3 6 9 12 15 18 | 15 12 9 6 3 |
%3 4 4 8 12 16 | 20 | 24 | 20 16 12 B | 4
N 3 5 10 15 20 25 30 25 20 15 0 5
37 8 8 12 18 24 30 38 30 24 18 H\ 12 5
=8 5 5 10 15 | 20 | 25 | 3 | 25 | 20 | AS\ /10 5
PO 4 4 8 12 16 | 20 1 24 | 20 16 | 12 8 4
10 3 3 6 9 12 15 18 15 12540 9 6 3
11 2 2 4 6 8 10 12 10 8\ |* 6 4 2
12 1 1 2 3 4 5 8 5 1“4 3 2 1
{b) Score sums (divide each entry by 4 to get cor@onding mean SCore)
2 4 8 6 7 8 hN&g | 10 ‘ 11 12 | 13 14
3 5 6 7 8 o R0 | 1oy 12 | 138 | 14| 18
4 6 7 8 9 | 104} 1 12 13 14 | 15 18
5 7 8 9 10 [ | 12 @ 13 14 15 16 17
6 8 9 10 11 N2 13 b 14 15 16 17 18
7 g { 10 | 11 et 13 | 14 115 | 16 [ 17 ] 18 | 19
8 10 11 12 |3 14 15 ;18 17 18 19 | 20
9 i1 12 | 13§ N4 15 16 | 17 [ 18 | 18 | 20 | 21
10 12 13 ) 15 16 17 18 19 | 20 | 21 22
11 13 | 14 \N 16 17 18 | 19 | 20 | 21 | 22 [ 23
12 14 13N, 18 [ 17 18 19 | 20 | 21 22 | 23 | 24
O

the cubical die cmerggsi&;inly from the numerical results set out in Tables 4-5 by successive

application of the method embodied in Tables 1-2.

We may statethc rule which emerges from inspection of the figures in Tables 4-5 as follows.
If yu, is th(,\’é'\egnency of a score sum % in an #-fold sample and hence of a mean score (x =1,
we write the cfresponding frequency of the score sum # in a sample of (r — 1) items and hence
that of a mean score (¥ + 7 — 1} in the form y,4 ). The tables show that every term of the

series ¥, is obtainable by recourse to the following rule : sum the terms of the series Y, -1,

for the 6 preceding values of x and divide the result by 6, L.e.

p=x—1

Yaird :% Yot -1 . (1)
p=x—96
For instance
p=5
Yo =% Fs = (1 141+ 041 40)=%;
p:
p=10
Yy =% 2 Yow — 735 B4 +5+E 5+ 4) = ¥4

[

¥
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TABLE 4

Mean Secove Distribution of the Cubical Die

287

% Unit Sample. | 2.¥old Sample.
Beore ._ T
Sum {00 . Relative | . ) Mean
E ;\}_e;r;. Frequency 1;:\"1:_631; Rclatn;eflgcsiuency Soore
i % 8 - - ’ x = 3
too 1 0o i 0
T i 2 1 1 '_1+0—|—0+0+0—'0=1 0
G 3 1 1-3 El+1—l—0:—0+0-5—0=2 1
4 4 1 2 l+12+14+04+0+0=3] 18
3 3 1 25 14+ 114+ 400—4 1-6
8 6 1 3 l+1-14+1-p1+0=5] 2
7 25 |14+151+1+141=26] 28
& 4 0+1+14+14+14+1=5 2-6
g 45 0 p0 14 b p 414 8
i .5 040404141 +1=3 38
i1 D55 lo+04+040414+1=2 3-6'\
12 PG 0402040+ 0-1T=1] 4"
13 | 38
14 \\1 -6
15 AN 5
16 AN 38
17 \% 56
18 . 6
),"
The corresponding rule for a die of # facs would be
+$ )
’\\" 1 x—1
N\ y:(r)"_'; z Yoly—1)
y X =

Starting with the data fo
we can quickly build

indefinitely.

more closely approgehing the normal type.
bution of the seefe bum and mean score of an #-

<
r Ahe/6-fold samp
vtite distribution o
The pim]‘gt‘"which emerges is onc of a su

NS

b DO s LT U R LINED b e e e

3-Fold Sample.
Relative Frequency
¥ X 6%

0

6
+0404+40+040=1
+ 200 +0=3
424+3R0F0+0= 8
+2 A4+ 0+ 0=10
2434 44+54+0=15
Fo¥344+5+6=21
BB A+5+65=25
M4 54+6-5+4=27
+ 54+ 8L5+4+3=27
64 5+4+5342-25
LSt 4+3424+1=21
i—4+3-5-2+1—{—0=15
L3.424L14+04+0=10
+2414+04+04+0~= 6
414+0+0+0+0= 3
+o04+0L04+0+0= 1

(il

le in Table 5, by successive application of this rule
£ the mean scote for samples of 7, 8§, 9, and s0 on
ccession of histograms (Fig. 63) more and

The number of terms and the range of the distri-

of the cubical Wig is evident from the following

The rule for the range of the score sum is 7 to 6v,

Sample of No. of Terms
i G=6-—0
2 11 = 2(6) — 1
3 16 = 3(6) — 2
4 21 — 4(6) — 3
5 26 = 5(6) — 4
6 31 == 6(B) — 5

Range of Sum

.. B
.12
.. 18
.. 24
.. 30
. 36

G LN oA L hD =

t, = 1(6) — (r— 1) =57 + 1.

fold sample from the 8-fold rectangular universe

Range of Mean
1...6
i...6
1...8
1...6
i...86
1...6

and the rule for the number of terms is
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More generaily for an n-fold universe the range of the mean is from 1 to », the range of the
score sum is from # to rz and the number of terms is given by

ty={n— 1)+ 1

A formal proof that the mean score distribution of a large sample from a rectangular universe

is approximately normal, and hence that mean difference distributions w.r.t. large samples are
itate an algebraic excursion which we may defer to

also approximately normal would necessi
Vol. 1 but the matter is susceptible of investigation by an empirical method, as we shall

NOW SCe.

"' determine the normal curve which gives a good fit to a distribution it is necessary to know
the numerical values of only two of its parameters, namely the mean and the variance. Hence
we can ascertain whether a normal curve gives 2 good fit for the distribution of the score mean
of r-fold samples if we know (M) the mean value of the r-fold sample mean séeted and V(M)

the wariance of their distribution. The former is simply the mean of the,unit sampling

distribution.  For the cubical die, this is 3:5 = 36+ 1); andin generghfor-the rectangular

universe of # items it is 3(n — 1), when the series range from 1 to 7. If\choice is random, the
. . " ! . .
variznice of the mean score of samples o from any univerge has a stmple relation to

f 7 items
the variance of the unit sampling distribution, and is therefore,_déditcible for the rectangular

upiverse as a particular case. To exhibit this relation we shall ¢mploy the following symbols :

V(x) for the variance of the unit sampling distributiop’>
V,(s) for the variance of the distribution of the sqoifa\sum w.r.t. 7-fold samples.

V(M) for the variance of the distribution of thé\mean score w.r.t. r-fold samples.

M(s) for the mean score sum of an 7-fold samiple.

ore Sum or a score difference w.r.t. pairs of samples

Mow the variance of the distribution of a scorey
le distributions (p. 175), so that

is the sum of the variances of the two samp

Vis) = ¥ 251 Vi) = 2V(u) ;
Vi) = }& 5) - Va(s) = 2Vs) = 4V ().
And in general Q
in genera .‘,\:“' Vis) = V() - (iif)
By definition : O”
y denion gw(s) T
~O" V) = 2 @2 - M= ;15 [Zy. s —rd] o o o )
Vis)=Zy .5 — 2 . . . . . . (vi)
From (v) and (vi): .
VM) = . Vo)
Hence from (iii} 1
V(M) =~ Vi) - : . . . . (vil)

The last formula is of fundamental importance, It remains to evaluate V{u) for the particular

If the individual scores of the # items each of frequency - ina

case under consideration,

rectapgular universe are 1tomn,
9
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1 n
V(u)zj;lz:m"’-ﬂﬂ'2
1
(n+1D2n+1)y (n —_1,-__1)”_ (nr - 1)

:.._...._-6—-—-— _.,...;i e _12 i . . (Viii)
Hence from (vii) and (viii) above the variance of the mean score distributi ois piven by
nt— 1 .
V,(M) - '—E— . - - . . . (IX)
For 2-fold samples of a 6-fold universe, i.c. double tosses of a dic, (ix) yives (035 - 24) e 146,
We may check this by recourse to Table 1:
VM) 4 (35 = s {1{1)% + 2(1-5)2 + 3(2)* - 4(2:5)* 4+ 5(3)* O
+ 6(3-5)2 L 5(4)* - 4(4-5) -+ 35O - 1(6),
o VoMY 41225 =~ 1371, O

o V(M) 2= 1371 — 1225 = 1460

By the same token the variance of the distribution of thefuléan score of G711 tosses of an
ordinary cubical die will be 35 = 72,50 that we may W as the sd:o i distribution
4/35 = 72~ 0697. For purposes of reference tosghe table of the novnul integral, the
standard score corresponding to a mean score of-@ is therefore 3 .- 0-Gui. ‘Fable 5 sets
out the exact distribution of the mean score ofthe 6-fold toss and the stindeni should now
be able to make a table by the procedure employed already in 3-04 3055 ) 5-07 setting
forth the exact cumulative values of the mean standardised scores and the covre -ponding area
of the normal integral, as given in the tables, with due regard to the hatf-inicrval correction.
It is surprising to find how closely thesnormal law describes the distribution ot thi mean score
of even small samples from 2 universg\Wwhose definitive unit sample distributios is iaclf far from
normal, \\

O EXERCISE 7.03

1. The four faces of 2gtrahedral die respectively carry 1, 2, 3 and 4 pips. Dtermine the exact
sampling distribution Of"{f}\.&ﬁifference between the mean score of pairs of 2-fold tosses.

2. Tor the Sa;m'\}ciie, make 2 table like Table 5 to show the mean score distribution of 2-fold,
3-fold . . . 6-foldtosses,
P

8. Bjagpeated use of equation (ii) of 7.03 determine the distribution of the mean score of 2 10-fold
toss.

4. Test the approach to normality of the mean score distribution w.r.t. 4-, 6-, 8- and 1(-fold tosses.

704 RaNk ScorE MEAN DIFFERENCE

Sampling from the rectangular universe of the cubical dic is de facto (Chapter 2, P- 59)
sampling with replacement. An appropriate model of sampling without replacement from the
rectangular universe is the simultaneous extraction of a sample of given size from a pack of cards
numbered consecutively. For instance, we may draw two or more cards at a time from a pack
made up of the ace, 2, 3, 4, 5 and 6 of clubs, as in Figs. 64-65. .
Whereas the die model has no particular relevance to practical statistics, the corresponding
card pack model is the prototype of sampling when the method of scoring is ordiral. If we
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can grade the responses of a group of individuals to one or other of two methods of treatment,
we are at liberty to explore the difference between the mean grade (i.e. rank score) of the two
sub-samples as a criterion of the relative efficacy of the two procedures. If each of » individuals
is distinguishable by order of merit and hence has a unique rank, each ordinal score has the same
frequency (n~"), and the unit sampling distribution is necessarily rectangular. By the same
token, the fact that we are able to assign a rank & to a particular individual of one sub-sample
signifies that no individual of the alternative sub-sample can have the rank x. In picking from
a pack of cards of only one suit 2 card which has x pips, we have in fact deprived ourselves of
the possibility of finding such a card in the residual pack. Thus rank scoring of two sub-samples
signifies sampling from the rectangular universe ewithout replacement.

Situations which admit of comparison by recourse to the rank score mean difference are
often such as are also amenable to treatment by the Spearman method (Chapter 8); which, as we
shall see, is more efficient, i.e. sensitive. For instance, we might sct out in,the following way
the data of a fictitious example cited later in 8,02 A\

oo

Scripture. Pocket Méney.
i Y
' Marks. Rank. Allowaniq::‘ Rank.
* A, Upper half of class. K
93 1 W G2d. 8
80 2 W) 3d. 5
60 3 8d. 4
Mean of rank score 5-0
B. Lower half of class. Fa .
55 o\ 9d. 3
45 ) 5 1/- 2
40 X\ 6 2/6 1
O Mean of rank score 2-0
P\
7o \a

NS

This disposition of th'(hiﬁta divides them into two w.r.t. success in attaining a certain mark (60)
for the examinatioftdn scriptural knowledge. We are then able to sce whether the mean rank
score for pocket allowance of Group A is greater or less than the mean rank score for pocket
money of Greap B. Without making any assumptions about the nature of the connexion
{sec 8.01) between schoolboy finance and proficiency in Bible lore, we expect to find such a
difference ; and we shall be satisfied to regard its existence as indicative of such a connexion,
only if we bave the assurance that a comparable result would very rarely occur in a situation
consistent with equipartition of opportunity for association.

We thus have before us two sets of figures consisting of the first six integers corresponding
to the number of pips on the six cards of our club-suit pack model. One set of figures merely
serves to classify our data in two groups of 3 items. The question which we have to ask our-
selves concerns only the mean values of the alternative scores of the two groups so distinguished.
For our present purpose, we may regard them as 3-fold samples from our card-pack model;
and the likelihood of the observed result is the likelihood of getting a mean score difference
numerically not less than 50 — 2:0 = 3 as a result of dividing the pack of six clubs into twa

equal sub-samples.
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Fig. 64shows the derivation of the score sum for 2-fold samples of the card pack model
from the rectangular unit sampling distribution, and hence the corresponding mean scofe
distribution. 'The next one (Fig. 65) shows the derivation of the mean score distribution for 2
3-fold draw. 'This provides us with all the necessary data for deducing the distribution of
the mean score difference w.r.t. pairs of 3-fold samples. )
board lay-out of Table 2 in 7.03, because the structure of a second sample is not independent
of the first, when choice is restrictive. It is therefore necessary to take into account the

composition of the residual universe resulting from the removal of a particular sample ; and
we can summarise the operations involved in the appropriate staircase mode! as in Table 6
which is self-explanatory.

From Table 6 we see that a mean score difference as great as + 3 pertains to 12 (= 6 +6)
out of 120 possible paired score sequences of three cards, Hence the expectation. of a mean

score difference numerically as great as 4 3 is 0-1 ; and the odds are only 9:1 against the

To do so we cannot rely on the chess-
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occurrence. If we took into account all the information at our disposal the Uielihood of the
result would be far less. There is in fact a one-to-one reverse order correspona nee of our twe
sets of 6 rank scores ; and only one out of 6! ways of arranging one set can coriespond cxactly
to any particular way of arranging the other. Accordingly, the likelihood which e Spearman
method (8.02 below) assigns to the event is 1 = 6!, or odds of 719 : 1 against,

TABLE 6

Non-Replacement Distribution of Mean Score Difference w.r.t, 3-fold Samples of the Rectonpudar U aiverss of 6 Items
! . o E —

) | . e Ly .. Laret

Initial Sample. Residual Sample. ! 'j\‘l_.\_'.' ;_“_\”‘

| "\ RH D KR HA AN
- T T ’ - . -_ N N -

M No, of M b Nooof L&D Nor, of
=11 . . WND, 0 ALean - P R N, 0 " “, ik, !

Score. Combinations, Permutations, | Score. Combinations. ]"L‘!’I“llt:\til:)li\‘-:., ; I Py courations. |
— o oL —
2:0 123 6 5-0 436 | (& S t |
23 124 8 4-8 356 LACYS 6 B t i

2-6 125, 134 12 48 346, 256 12 I iy
3-0 126, 135, 234 18 40 | 345, 246, 156\)) 18 L 18 !
34 136, 145, 235 18 36 | 245, 236, 146) 18 Fong 13 |

34 146, 236, 245 18 33| 235, 147NG6 18 e i3

40 156, 246, 345 18 30 234, 183v126 I i o 13
48 .1 256,348 12 2.6 1347125 12 L6 12
46 356 8 281 V124 8 DT i i
50 456 1 [ 20 N 125 o) AT i i ‘
2 .‘ ’ 1 B I |

e

This discrepancy between the liﬁaihaods which the Spearman and the difference method
respectively assign to the event again(p. 217) brings into focus what statisticians mean when they
distinguish between more or.less efficient statistics. One index or statistic, e.g. Spearman’s
coefficient, is more efficient than another, e.g. the mean rank score difference of the last cxample,
if it gives more weight QOZbelevant information contained in the data. To say that the method
Whif:h the last exampl’&'{llustrates is, in fact, an inefficient statistic for the reason stated above is not
egmvalent to saying“that it is fallacious. It merely signifies that it fails to take stock of every
circumstance which' defines what is unique about an observation ; and in failing to do so assigms
to it a highertikelihood than a method which takes stock of other information, in this case the
fact' that the tWo sets of rank scores correspond exactly in reverse order. "Thus a less efficient
statistic may make us hesitant to reject a null hypothesis, when an efficient statistic would
encourage us to do so; but the converse is not true. Inasmuch as a null hypothesis is in

general the conservative alternative, an inefficient statistic errs on the side of conscrvative
Judgment.

705 SAMPLING IN A NORMAL UNIVERSE

By recourse to a familiar model, we have now clarified the meaning of a unit sampling
distribution, the distribution of a score sum, the distribution of a mean score and the distribution
_{in .the_ difference between the mean score of pairs of samples. 'To determine each of the dis-
tributions last named, we have to start out with some information about the universe jtself.
When the method of scoring is Tepresentative we are rarely in a position to postulate the dis-



THE RECOGNITION OF A MEAN DIFFERENCE 295

S S ;@;J@@Ej
R e
{ R
@@@@@@
e

i

el
-
LR |

(o)
lat?]
O
[+]

&

E{ L
-

iy

LS
Bede I8 hernlvlor®y o A Ao ) e ]

e e JEITE oo » JRCT
s+

oY

T ¥
"

)
M

I

|

i

»

Hi

Y

b 3

B A A O
e e s

L4

s

1 ; = .

*
)

C:'
e

"l e
TR A O

-
A

(+]

I N
R W 2

T
k)

[+ Y 7ol

g
*»

R RS
Sl et
B 2 e"er

S O O R A

e ¥ Sl TR

, BricsnBgtdeay

[¢ 4

(= Sle MEeIRR

Lo & Sleve L= )Ees s )i

e o Lo s -

FEH R

S

EUM (X} 9 JINo 1" 12 13 ) 15
MEAN (X +-3) N E 4 FER Y 5
FREQUENCY (Y |'l2% \ g 5 ) s % s s

Fig. 66. Sampling from a Rectangul}}r Universe of 6 classes without replacement. Histogram of the mean score
and score sy bf the 3-fold sample based on the chessboard of Fig. 65.

K7,

some empirical information. A histogram
of individuals w.r.t. a particular individual

score, e.g. leights, weights, incomes, in a large population provides such information, since the
elcctivity of aclass in a sample of one individual is by definition its class frequency in the parent
universe. Since it often happens that the contour of such a unit sampling distribution, i.e.
class frequency distribution of a large population, coincides closely with a normal curve or with
a skew type of curve related to the normal, the distribution of means and mean differences of
samples from a normal universe has a peculiar interest.

Tt is not easy to visualise a model with the algebraic properties of a normal universe ; but we
now know that the binomial series is the parent of a large family of functions of which the
sormal is a limiting case. If we can construct a model with a binomial unit-sampling
distribution, we have therefore the basis for a more catholic approach to the task of defining
the sampling distribution of representative scores than the assumption of strict normality
permits. Sampling from a binomial universe in this context signifies samp

of which :

tribution law of tbcj.l}nit sample without recourse to
or other graph which exhibits the relative frequency

ling from a universe



296 CHANCE AND CHOICE BY CARDPACK AND CHESSBOALT

(a) each item has one of (# + 1) scores making up a sct which it is prasible to arrange
consecutively with equal increments and hence, by change of scule. as the numerical
sequence 8, (S + 1), (S +2) . .. (S + n);

(b} subject to the usuval convention (p --g) = 1, successive frequencios of scores 8,
(S+1) .. . (S +n) then tally with successive terms of the expuniog of (p +qr,
so that the frequency of a score (S + x) is

n!
xl(n — x]!P v
It is not difficult to visualise sampling from an indefinitely large universe =0 defined, as

illustrated by the derivation (Figs. 67-69) of the mean score ditference didatouioa when the
unit sampling distribution of the die, e.g. a flat circular disc of two fagg@ynly, 15 viven by the
terms of the binomial (3 + 1. To explore the implications of samipling troos an infinite
universe containing more than two classes our model will be a tc;@.lfédml dic (Fues, 70-72) of
which two faces respectively carry 1 and 3 pips, the other two fagesvedch 2 pips. I'ivus the unit
sampling distribution is given by the terms of (3 + ) %in accqufﬁﬁcc with the followice schema

Score . . 1 \\2 3
Frequency . .} \é 1

P

By successive application of the chessboard devige e obtain the following results

(@) 2-fold samples A\
Score sum . N9 3 4 5 6
Mean score . \ A | 15 2 2:5 3
)
Frequency R T
(&) 3-fold samples . (.
' Scoresum NS 3 4 5 8 7 3 9
MeanscoreD. . 1 13 16 o 28 26 3
Peund™ - BB & w

Thus the frequency distributions for 2-fold and 3-fold samples are respectively terms of the
expansion ok (3 + §)* and (4 +4)®. This suggests the following rule : if the unit sampling
score distribution corresponds to successive terms of the expansion of (p - ¢)*, the distribution
of the mean score of an 7-fold sample corresponds to successive terms of the expansion of (p--¢)™
That this is true when » = 1 we have already seen by recourse to the flat circular dic of

Figs. 67-69, the model f

or our universe which is both rectangular and binomial. That the rule
h(?lds good when p and ¢ are unequal, we can test by recourse to a tetrahedral die (Fig. 73)
with one facc'e bearing 1 pip and three faces bearing 2 pips. The unit sampling distribution
law is then given by ( +3. For 2-fold samples we have

Seore sum . .2 3 4
Mean score . .1 1-5 0
Fregquency . . . _116. .6_ .9

18 16
(3)* 2(H@) (3)®
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Tig. 67. The Binomial and Rectangular Universe of the 2-faée,dfe. The unit sampling distribution is given by
th_e terms of the binomial {§ + §)%, that of the mean score.pr’ score sum of the 2-fold toss by the terms of the
hinomial (1 4+ 1)* and that of the mean score and score Sum of the 3-fold toss by the terms of the binomial

G

In more general terms than the foregoifigy we may state a theorem suggested by the foregoing
examples as follows : \‘ )
If the binomial (p -+ q)* & >eﬁm'tz've of an s-fold sample score from an indefinitely
large universe and that of @1-fold sample score is (p + qY, the distribution of the sum of the
score of an s-fold and p_(a’t—fold sample, i.e. that of the score sum of the (8 + t)-fold sample,

tallies with successive’terms of the binomial (p + q)**+*.

It is implicit in the‘sf;a\tement of this theorem that
(i) the sm:eg\ihcrease by equal steps and hence by unit steps after appropriate change of
scaley )

(i) unless @ = &, the score range {4 to A + a) of the s-fold sample will not be the same as

the score range (B to B + b} of the #-fold sample.

With due regard to these considerations, we can derive the theorem stated above from a
chessboard lay-out in conformity with the multiplicative and additive operations which respec-
tively specify the electivities of concomitant independent and alternative events. The schema
of "Table 7 is a grid of this sort, exhibiting simultaneous extraction of

(i) any one of (a + 1) different s-fold samples from a universe with sample scores 4,

(A+1),...4d+a;
(i) any one of (b + 1) different z-fold samples from the same universe with sample scores
BBA+D... (Bt
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i we put {@ + b) = ¢, the range of the score sums is then from (4 +B)=C to
(4- B+ec)=(C-+ec) A glance at the schema shows that the frequency of a score sum
{C -i- 4} is given by :

(@ + @b + Gnbey + by + b)) P

]

= z Gy » Dy P2 °°

=0
=4
=pig—* Z Az - bia—m-
2=10

We ean now recall Vandermonde’s theorem, viz.

B < ! ) plr—e) N\
a T — ax -
(@+8) ,Zo xl(r — »)! ’ A\
@+ b ETam b S\
' o Lyl {r—a) AN )
X=r , ’: \
= z @, 2ybes - ) ‘~~'\\
z=1 }

In virtue of Vandermonde’s theorem, the frequency of a,s@&é sum (C + 4) as defined above is
therefore oD

a 4 by el
( -{;U ) .P-iqﬂ—:l”:.: T' .quﬂ—i_

ALI,E.R.Q‘&TIVE DERIVATION OF 4=-FOLD TOSS
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‘Fie. 69, Alternative build-up of the 4-fold toss for the die model of Fig. 67 by combining the results of two 2-fold
T trials.
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More generally, and by the same token, the frequency of a score sum (7 - v s
a + by cown o= . eos
(__x!—) . P q‘ = E . _fJ l?c .

This is the general term of (p+¢)° = (p 4 ¢)"**, whence the sum ol the raw scores of two

unit samples, i.e. that of the score sum of a 2-fold sample, from an infindte brosniad universe of
(n + 1) score classes is (p + g)*+* = (p + @)*. 1ence also the binoiad (p - g)*e =
(p + g)*~ defines the distribution of the sum of the scores of 2-fold and wnti wnples, 1e. that
of the score sum of the 3-fold sample ; and more generally (p ¢ ¢)™ is the hiscnial definitive of
the distribution of the score-sum, hence also the mean score, of r-fold sample: iaken from a
universe whose unit sampling distribution tallics with successive terms of the bigomial (p + g
By an elementary and now familiar property of the binomial distribution thhvariance of the
score sum of the 7-fold sample is therefore given by O\
e \
V(S) =rupg = r. V() R O : . . (1)

#7%G
S

Now the mean score of an r-fold sample of which the correspondifgp score sun s S is given by
(8 +r). Hence we may write for the variance of the distribuf‘lg\m of the mean seare

von=35(7) —[27]
= ,rlé{?r{’a}é -(zv9)}

- V) = XW(S).
Hence from (ii) &

b L A

This agrees with the result (vi#j'cbtained above (7.03) by recourse to more general considerations.
We thus arrive at the foLl\ci.%fng conclusion w.r.t, sampling in a binomial universe : if the unit
sampling distribution of\a.score which increases by unit steps accords with the terms of & binomial
distribution of variante V(w) the distribution of the mean score of T-fold samples accords with the
tertns of a binomiglistribution of variance V(u) = x. Now we have already shown that: (a) the
normal curve talties closely with the contour of the binomial histogram when r is large;
(&) that this is'60, even when p and g are grossly unequal, if rp numerically excecds 2 certain
limit.  As practical folks, we need not therefore soar into the empyrean of the mathematical
contimuum in quest of a rigorous demonstration that the sum of two normal variates is itself
a r'aormal.va.riate, and hence that the distribution of the mean score of samples from 4 normal
universe 1s itself normal.  With due regard to the meaning of the parameter V, i.e. I = V()
if % below is the score sum and ¥ — V(u) < r if x is the mean score, we may thus describe the

chstrll?utlon o.f 4 Score sum or score mean from an approximately normal universe by a function
of which the integrand * has the normal form

1 — (x — M)
Flx) = "%
* See explanatory remarks at the he

. . _beginning of 4,08 w.r.t. the appropriate scalar change for obtaining the corres
sponding freguency function definitive of the ordinate of the distribution in the interval x + $Ax.




THE RECOGNITION OF A MEAN DIFFERENCE 301

= AA

AA|AAIAA JAY-N
A A

o iﬁ AA|[AA] AA
A AA|AAAA
AAIAAIAS AA|AA|AA

LA IAAILA EYNEYNEY Y vy

N
BN 6

& Score Sum (a2 3 4

) AA ScoreMen(d) 1 I'5 2 L 5% 3
» A 4 ":"

LA|LA|A Frequency by} o Yo %ﬁf't & %

L ”
of more than mq\classc-:s. The model is a tetra-

Fla. 70, Sampling from a Symmetrical Binomial Universe

tedral die with 1 pip on one face, 2 pips on each of two faces, and 3 pips ¢h he’ remaining face. The binomial

(¥ + 3)* dcfines the unit sampling distribution. "The terms of (3 + §)¢ \define the distributions of the mean
score and score sums for 2.fold, tosses.
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Fig. 71. Derivation of the mean score distribution for the 3-fold toss of the tetrahedral die of Fig. 70,
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Fig. 72. Histogram of the mean score and Score sum distributions for the 3-fold tows of Fig. 71,

UNIT SAMPLE

Fie. 73,

1 pip and the other three faces each carry 2 pips.
(i + &, that of .the mean score or score s

A%/
{2~ FOLD TOCS5s
"\n

\©

UNIT SAMPLE

Y 3

AATAALA
| AAAIAA

AAAAIAA
AAAAILA
AAAAIAA

|&A JEN

M )
MEAN %2
¥y

2
t
A

- Y

1-5
200
Y

Gy
s

Sampling from a Skew Binornial Universe. The model is a tetrahedral die of which one face carries
The unit-sampling distribution accords with the binornial
um of the 2-fold toss with the terms of (1 + D&
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In what follows, we shall confine ourselves to its implications wis-d-vis sampling in the
normal universe. In a sufficiently large r-fold sample of such a universe we may assiume that
the possible range of individual scores and their frequencies tally with those of the universe
jtself, i.e. with the unit sampling distribution. In so far as such a sample is truly representative,
the varisnce of its observed frequency distribution is therefore approximately that of the unit
sarmpling distribution of mean score M, i.e. V(). Accordingly, we may take as a provisional
(sec p. 304) estimate of the variance V(x) definitive of the distribution of a score x in the parent

yniverses

'S -

Si‘n{:e the variance of the mean score distribution is V{u) -+ r, our provisional, estimate of it
will therefore be \

N
N

1 :
;EZ(“" - M)z -'\’ ~
Now the distribution of the difference between two normally: distributed scores is itself
normal, With due regard to the error inherent in any such pravisio'nal estimate, we therefore
have at our disposal the desiderata for a c-test on a difference between the score means of two
groups. Before proceeding to set forth the procedure in detall; one result of our examination of
the properties of the tetrahedral die model descrves qupher comment. We have seen (3.04)
that the contour of a skew binomial distribution apprbachies the normal as we increase the value
of the exponent m in (p + @)™ If the unit samp}iﬂgdistribution is a skew type which tallies
closely with the binomial (p + g)™, the mean scare ‘distribution of the 7-fold sample defined by
(# =- g)™ will be necessarily morc symumetrical'and more like 2 normal distribution in virtue of
the fact that 7m is greater than #, being xery much greater if 7 itself is large. From this con-
sideration, we see that the distribution{of the mean of large samples may be approximately
siormal, even if the unit samp]jng\d@;tfibution is somewhat skew.

706 THE C-TESTCFOR A REFRESENTATIVE SCORE DIFFERENCE

Zo) T . .
« Ao’ assume that the distribution of scores in a very large sample will
nce that the variance of the distribution

viate greatly from the variance of the

By and large, it is s2
tally closely with that{ the parent universe, and he
of individual score§ within the sample will rarely de
distribution of«i@d‘r\a:idual scores from the putative parent universe, ie. from the unit sample
distribution. NIf the mean score of every sample were in fact the same as that (M,) of the parent
unijverse, the mean variance of all possible samples would be the variance of the distribution
of the individual scores (%r). Actually, a particular r-fold sample has its own mean (M,) and

its variance (V) given by
— M,)® .
v, = Z_'_(_"i_r_.fv_l R €1

ividual sample value of the score. If any particular

The summation here extends over every ind
we may write this in the form

sample score (x,) occurs with frequency ¥r,
Vo= Syeley— MY . - (if)

is in fact somewhat smaller than [4¢]

As we shall now sec, the mean value of V, in (i) above
— V, — r would be unduly

Hence a mean score standardised by recourse to the relation of,



104 CHANCE AND CHOICE BY CARDPACK AND CHE=:BOARD

large more often than otherwise. We can give due weight to this cirenmstinee as in 4,10 by
defining a statistic whose mean value is identical with the truc varianee (43 () = 1) of the
mean score distribution. For the sample statistic whose mean value is the variance of the score
distribution in the parent universe, we shall here use the symbol 170 Heeo e i v is the expecta-
tion of extracting one such sample

vy X Ve MWDo ()
Since the statistic which satisfies this criterion is the second moment of U ~cure distribution

about the true mean of the parent universe,

Vi= Xy (x,. - ﬂ:{“)'-’-
=X ([xr - Ma]2 -+ [F”*' - "1'}"])2

=Xy (x, - M)PE-+2AM, -M)2 ¥y (v, - MY (MW . N M v
Now the sum of all the deviations (x, - - M,) of the sample scores 1s /g{«?\ Plve by (i)
Vt : Vs + (‘ﬁ‘ru - v"[u)l‘: (":‘}." . . . . (IV)

For all possible r-fold samples, we have in accordance with (1|Qs1u1a1 (1)

MV = £ 3Vs 4 By, (M, S0V
The last expression on the extreme right is the vﬂr,i,{i"‘} of the distribution ol thie mean score
of all -fold samples, so that ANV
S o (M, — My V(M) = Vi
Hence from (iii) ’ '
e+ 1

O §
ZE\\VS =7 _r ! V(u).

S r—-1__ . r—1 .
DA A — M(V) = —— DIEANE

Whence from (jii)

- PR . + . . .-
From (1) above, it1% consistent with this identity to write
4 ~\’ ¢
) etV S )
y—1 r— 1
Smlce V. is the u.nbiassed estimate of V{u) we have as our corresponding estimate (57) of the
variance of the distribution of the mean score _

2o Vi 2 — M)

r rfr—1)
Ls— [Z(m— M) [ (%
rir — 1) ’

It is customary to speak of s in (vi) as the standard error of the mean score distribution-
We hana already seen in 4.08 that a difference between sample values w.r.t. normally distributed
score differences s itself normally distributed ; and the reader should be able to adapt the
argument to the situation here discussed (see also 7.07 below). If the sample variances are
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that of the score difference distribution is given by (x) of 4.06 as
$3 =545 . . . . . (vii)

If the mean scorcs M, and M, of two samples respectively ¢-fold and b-fold each from
the same aniverse are normally distributed, the integrand of the distribution of the difference

M, - = (M, — M,) is thercfore given approximately by

respectively s, and 55,

— M3 .
Y, = %P 5 . . . . . {viid
ARV, SR T i)
The corresponding standard score ot critical ratio is
M, M,—M (ix)

PN CE /U '
We arc now in a position to use the table of the probability integral in the custbmiary way to
evaluate the odds against or in favour of the occurrence of a mean difference as'great as the ¢
value derived from a set of observations in conformity with the nuil hypothésis“that our a-fold
and #-fold samples come from one and the same universe. To exploge.:tzﬁf: null hypothesis so
defined by this method, we have to make the best of a bad job, in seyfar as we do not actually
know the true value of the universe mean. Consequently, we r;m:st‘ tely on an estimate (M,
which the pooled assemblage of {@ + b) score values x,, suppliése.

Z Kat .".\\' (X)
= R T

(g +b) 0O

with the value of M, defined by (%), sie thus take as our estimate of the variance

M,

In accordance
of the universe score distribution as prescribed BY V) :
ﬂmab — M,)® (Xl)
V(H)T‘@-ﬁ—b—-l) . . .

{'"\ v .
{of the distributions of mean scores i samples of a and b

Tt follows from (vi) that the variancai . .
jtems respectively taken. from the putative parent universe are given by

2 __._*X"(x;.b - ﬂf‘fs)g . 52 _ Z(xaa - Ms)2 )
Sivda+ -0 Ba+b—1)
Whence from {vii} \\ )
s.g\ 2 —_ . b — —Ms L1
N 5 G+b— Tab X € }
./ -
Since our assuh\p}ion is that the samples are large, so that 3/ (a+b) ~ {at+bo—1) does not

differ materially from unity, we may evaluate s, in {ix) as

3%y — 4 AL
Sdgm/_L_&b_—F . . . . . (xiii)

of 3.06 as follows :

2 . . . . (i)

calculation we adapt (ii) and (iil)
nV = nVy — n;
o Drm — M = 3a, — (a + ByM:
~2—'be —(a+OM; . . . . . (xiv)

2
§g = pr

For convenience in

* * * #*

20
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Example. Dahlberg (Statistical Methods for Medical Students) ciwes tgares (centigrams
per 100 e.c.) for blocd cholesterin of a control group of 25 normal wonen and a group of 30
female schizophrenics as in the attached table.  From the totals ("Tible 8) we have

M, (control group mean) 383 25 1RaY

M, (patients’ mean} 477 0 B 15

D,, (group mean difference) 15-90 - 15030 a8

M, (mean of pooled sample) (383 . 177y 55 15636

The last quantity is our estimate of the mean of the putative commen usiverse of the null
hypothesis. For the sum of the squares we have

Fa? = 5931 - 7927 = 13858 N\
J{x — M2 == 13858 — 55 (15-636)* : 411 O\
=
TABLE 8 O\

s8>
* = - . - \“ . . . o
Cholesterin in Blood of Female Patients suffering from Dementia Pr{rrnx,’c’m\f Clontral ot Laiiirams per 10 .

. A\J I
(i) Control Group (25 Women}. ‘ .‘C\ (i) Patients (33 e |
f—— —_— . :*“} -
Individual Values (x,). ‘ At R ;"fll(li\'!‘dll;l| Yalues (a0 |
| iR -
17 | 2893 | 13 e ‘
13 169% ‘ 11 131 :
15 225 12 111
" (22 2 ‘
15 O\ 225 | 12 T4 .
18 ¢\ 256 14 L taiy i
15 X oo ‘ 12 L ‘
14 D 196 _ 11 121 '
1; & 223 \ 18 4 !
~O 198 29 4844 '.
l"é"\‘:,\ | 289 | 21 441 |
,b\“" 225 ‘ P : 484 ;
X 289 | 19 a3 |
‘”,53\18 324 19 361
Ny 13 169 ny 484 :
Q 2 %E_S 256 21 441 !
5 225 18 594 ,
15 223 15 223 |
15 225 14 196
14 196 14 140 ‘
14 196 13 1659
ig ‘ 258 17 i 283 |
169 15 223
18 ‘ 324 17 289 |
14 19 14 146G !
19 361 18 ' 304 !
17 289 i
13 169 |
15 295
14 196 |
‘ 14 196
\ Totals 383 | 5931 477 7927 ‘
I
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If we use (xii1) as a sufficiently good approximation for the variance (s3) of the difference between
sample means of the putative common universe : :

. 41l
% T30 % 25?0548’
sa = V0-548 ~ 0-74.

For the critical ratio of the difference between the sample means we thus have

D,, 058
By this criterion we have therefore no reason for rejecting the null hypothesis
O
"\

N

NoTeE oN STATISTICAL ESTIMATES ‘

Some statistical authors (Kendall, Weatherburn inter alie) employ {m’economical notation for the
derivation of a statistical estimate of 2 universe parameter in termsNof)an empirical statistic based on
the information a sample supplies, e.g. the variance of the distriQution of observed scores in a simple
r-fold sample, defined by ' ) x:\\’
el €
v, = 22— ML

To avoid the inconvenience of unwicldy summations in which it is necessary to distinguish y, the
frequency of a sample of given composition fra'y, the frequency of a particular score in our sample
under observation, we can denote by E{. . .),the ‘operation of extracting the mean value of the sample
means. If we denote by S, the statistic wiiast mean value referable to an indefinitely large number of
samples is the unknown universe paramc\ﬁe} »and distinguish our empirical statistic by S,, we thus write

O B(S,) = S,.

To solve this in terms of Sg,:ﬂfe corresponding parameter of the sample under observation, we first
seek its mean value, E(S, ’;\'T‘o determine the statistic {V,) whose mean value is V,, in terms of the
mean square deviation gs)'of the samplc scores, we therefore proceed as follows:

2 8

e A
h
) 2

SV = B 50— M| or v BV = Bl — MY

In this expression M, is the observed mean of the r-fold sample under observation. We can write
(x — M) = (& — M) — (M, — M,) and (x — M} = (2 — M) + (M, — M), so that

(x - M3)2 = (x - M“)g - 2(345 - Mlt)(x - Mtl) + (Ms - Mu)z
= (x - Mn)2 - Q(Ms - Mu)(x - jua) - Z(Ms - Mu)2 + (Ms - Mu)z
- (x - Mu)z - Q(M% - Mu)(x - Ms) - (Ms — Mu)z'

f we sum all items within a sample, the total of [all the deviations (z — M,) from the sample mean
(M) is zero, so that
B~ M) = Z(x — M,)? — Z(M, — M)~
. r.EB(V) = E[Z(x — M, — E[Z(M, — M,)%.
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Each sum of square deviations within the brackets consists of r itens, 1 capeciad Lol long-run mean,
value being therefore 7 times that of the corresponding square deviation v elt. o at

E(V) = E(x — M) - E(M, — My

The expressions on the right are respectively mean square deviations of 1 oot from the universe
mean and the mean square deviation of r-fold sample means from the v rean, Thus the first
is V, and the second is (V, = 7), so that

E(V:) == Vu - (p") vl . 1‘u-
r

r

A ’:1 BV,

O\
Hence, as above, we derive O\
(x -~ M)
v, Ly, =2 O
r 1 r— 1 “\,n,'s
w'\\‘
,'\\J
EXERCIS L\ F.06

For the following series of individual mcasuremt,nta, assesy the sipnificanes o sex differences
w.r.t, hand length, cephalic length, neck girthy Mabdominal circumference, bispinas width and bi-
sacromial width, at each of the age-levels st,mHed See remarks on Ex, 7.07, p. 81

\ &

1. Hand length,

9- 9% Y}s | 13-13% Yeurs. [5L-T7F Veara,

_ R ——

Hand Length
(Cm.),

Girls. Boys. ) Girls, Boys. (irls.

140
145 ™
130 0%

pas
1]
¥ ¢
N
4
\
OB LD W

bR e e O R =
—
—_ =] Ch T th e

—
—

(PRI L R R
[~

H
©
el

[}

P

=

<

)
—_

I~
o

&

JE——

— s G s

)
in
=

—_— 12

Total . 25 25 e

50 50

—_
3=
—
sl




THE RECOGNITION OF A MEAN DIFFERENCE 300
2. Cephalic length.

|
i 8-9% Years. 13-13} Years, 164-17 Years.
Cephalic .
Length {Cm.}.

Boys. Girls. Boys. Giris. Boys. Girls,

16-0 1
18-5 1 1
170 4 '
17-5 _ 2
18-0 12
185 1
190 3] 17 4 2
18-5 1 A\ o
9.0 - Rt

QG =T
[ o=
[
—_—
h =1
—
[3=R" R ]

Total . 25 25 50 50 L 712 18

|

P
@)
o

8. Neck girth.

9.9} Years. 13-13} ng%ci 163-17 Years.
Neck Girth ¢ &
(Cm.). O
Boys. Girls. Boys{ ) 3 Girls, Boys. Girls.

230
23-5 2 AR i

24+5

—

=]
=]
L=
}—shrlkbﬁvh—ltﬂb--
¥
V%
N
bo o L e Gh
=R ®O R D - R

30-0 e N 1 1
305 '"\ Nod

Do LR D R T e 0D W) TN e

— e G G G0 B e e

—

32-0

e S-Sl

| =0 ]

Total . 24 25
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4, Abdominal circumference.

CHANCE AND CHOICE BY CARDPACK AND CHESSBOARD

l] 9.9% Years. | 13-138F Years L1417 Years.
| _ ] L
1 o | ) , T
Bovs. i Girls. | Boys. | irls. i | Girls, ui
il B _
[ 480 ‘ 46-25 | 52-5 | 550 | 4840 Gl N 560
1' 49-5 480 L 523 { s80 L A G110 ST 1.
| 500 85 | 540 B85 | 51 813 590
50-5 &5 1 sa0 | 3 540 o - 610
510 485 | 540 '| 59-0 550 15 615
© 510 485 545 | 590 55-0 BETS 625
1 5125 485 ‘ 550 | 59-0 553 RIS N . ez
1 51-5 48-5 ; 35-0 ! 5495 S840 B e\ : GrZ-S
| s 490 550 | 605 56-3 AR i 625
! 315 ‘ 450 55-0 ' 605 i 56-5 BT B G.E(J
i 520 50-0 550 605 | 570 B s 650
| s20 50-25 555 605 570 s 665
i 823 30-5 ‘ 555 61-0 I 57-0 NS Ga | ‘37:'0
| 525 505 | 555 615 | 580N\ B3t | 680
52-5 sto | ss5 61:5 5§-,l?\\~ . 63D - 680
52:5 510 | 360 613 837 1 BT .o
53-0 51-0 \ 565 615 NGRS 640 P 7t
53-5 ‘ 51-5 i 565 62-5 590 | B850 75
5025 | 515 | 565 635 w\* 580 | 670
545 530 ‘ 57-0 64-0,\™ 59-0 - 690
55-0 540 | 570 640 590 | 890
5575 54-0 ‘ §7-5 65:0 595 (93 :
570 | 585 L 580 NS5O BO0 ;T2 |
57:0 6§00 | 580 ..}\ 675 60-5 | 72 _
59-5 ‘ 875 | 380, (N 710 1.0 ' 730 |
I\ | IR
&~
5. Bispinous width{),
7\
NS o
‘x 9-93 Years. 13-13} Years. : 16 L-17 Years.
Bispinous Width” : I
Bays. Girls. Boys. Girls. Boys. sirls.
i [
63 9
7o 4 8 3 2
75 g 4 4 3
80 8 9 12 13 2 ]
&5 6 1 16 16 2 1
o0 1 15 12 7 5
9-3 1 1 4
100 . N
10-5 ;
11-0 7
115 1
I
“Total 5 25 50 50 12 18
]
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8. Bisacromial width.

9-54 Years. 13-134 Years. 164-17 Years.
Bisacromial : I

Width (Cm.). .
Boys. Girls. Boys. Girls. Boys. Girls.

20-0 : 1
20-5
21-0 &M
21-5 A
220 A
225 <'§\ “
23-0 1 1 « W
235 1
24-0 7
4.5
250 4
25-5
26-0 4
26'5 4 W
27-0 4 2 9 ¢ AN
27-5 O
28-0 1 7 114 ™
285 AN .
29-0 4 AN

B A =
&

300 H R 7
30-5 1 &
310 o\
a1-5 %

320 OO
32.5
33.0 ) t\./‘
34-0 2.
345 O
350 O\

355 R\ 1
36-0 :.\\;
365 W
37-0 <\

375 ,
380

w-hcou-E...m._c,._m

o
L

-

=

= = =)

Ll ]

Total . 25 25 50 50 12 18
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707 THE TREATMENT oF Palren Dirvreru~yors

In biological research such as therapeutic trials and in many clisec
we commonly contrast the effect of circumstances on groups o citier
ticular individual necessarily shares any scemingly relevant pecolinie

st legrieal problems,

- of which no par-
ab o member of the
other ; but laboratory enquiry often presents us with the opportunity of fuiicr observations by
exposing each individual of a group to both of two procedures, by subiectize o two treatments

one or other of a pair of individuals themselves subject to sinilier eatersst condittons such as
time of day, available illumination, humidity, cte., or by expostne to are ooather treatment
members of a pair selected on account of individual similuritios wort. hody weirht, age, blood
relationship (e.g. litfer mates) and so forth.  Whan we desien an experizert n this way, we do

50 in general because we have reason to suspect that the removal of soree jnree of variation,
which would otherwise obscure the difference we wish to test, will help us 198 woxe the existence
AN

of the latter, if it is indeed a real one, ¢\

The very fact that we do so means that the experiment does noyn Tt the postulates
inherent in the argument we have used to justify the appropriateadet of te rull hypothesis of
7.068. The assumption implicit therein is that each possible Swnple nean lus equal oppor-
tunity of association with any other, since we derived the saymbing distribativon of a group mean

difference from the chessboard set-up ; but the circums@e that a muwemie of one sample
shares some common characteristic with some member ;1f§tfw other sivnifies Uit the two samples
are indeed more alike than two samples taken from he same universe neel T Accordingly,
we must explore a new approach to the problemy" Tnstead of asking whether the numerical
value of the difference between mean scores ofsfyo groups is signiticant]y ereater than zere, we

ask whether the numerical value of the mean of the differences between the scores of members of a
pair differs significantly from zero, N

The logic of the paired difference: pi'bblem raises for the student diftivaliics deserving of
more attention than they commonlyiréceive, It will therefore be profitable 1 make explicit
Fhe nature of the null hypothesixﬁf'eéch step in the argument. "T'he null hypothesis that there
1 no 1eal difference between alternative scores of one and the same pair sienilies that our first
concern is with a pair of {4£8ld samples from one and the same universe.  On the other hand,
Eiemgn of the eXperiment\signiﬁes that the universe from which we take one patr of unit samples
is not necessarily thessgime as the universe from which we take another.  Indeed, we pair off
our observatior;s bg {s¢ we have reason to believe the contrarv. Nonc the less, the mean value
of the score differeice w.r.t. 2 unit samples from any one such universe is necessarily zero, and

.\' 3 . : I j i
the mean ,"oaif:f% of the sum of such differences referable to an assemblage of universes is itself
zero on that decount.

¥

We an make no headway towards devising a satisfactory test for our null Ipothests unless
}Zzniasniuizga:)}iy rely on additional in{:'orma:tion about the distribution of our single samples
normal ot € same universe ; and in this c_opt.ext we shal‘l assume thflt cac.h umvcrst.z 15 2

: verse.  We may then formulate our initial assumptions in the {ollowing terms:

a i ati i i ! .
(@) each pair of observations constitutes an act of choice from a particular universe not
necessarily the same as any other such universe :

(6) within this framework our null hypothesis may be that cach member of a pair of observas

tionsisas i . st |

ample of one item from one and the same universe of normally distributed scores;

¢} in virtue ice 1 i 1 !

(€) . . of the. act of choice involved in extracting from any such normal universe 2
pair of items with score J

call 2 dus : vallues % and &,, we assign to the sclected pair what we here
core, being the difference (D) between the two scores x, and ;-
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{K ¢-test—or indeed the more sophisticated #-test mentioned below—of the null hypothesis
then involves two propositions :

(1) a normal distribution of the d-score from one and the same universe ;
(i) a r{ormal c,‘_ustnbution of the mean of the d-scores from the assemblage of universes
which furnish the set of paired cbservations,

Tlhe student may find it easier to follow the ensuing argument, if we first materialise the
foregoing assumptions by invoking a model set-up for four pairs of observations such as the
following :

{a) We have four urns, each of which contains counters labelled with 0, 1, 2 to 50 pips in
proportions specified by the terms of a binomial of the form ( + ¢)*, the precise values
of p for the scveral urns being -5, 0-4, -3, 0-2; ~

(6) We choose from each urn two samples each of a single counter, recording\the difference

(D) between the number of pips (x, and x,) on the two members of the(pair as the d-score
"\

of the urn. {

In this set-up we have four universes each approximately normalin conformity with our
findings in 5-08; but the means * and variances of the four normal it sampling distributions
are different, the latter being

50(0-5)(0:5) ; 5X0-4}(0-6) ; 50(0-3)(0-7) kN 50(0-2)(0-8).
Tt is in this sense that we shall regard the universes frotn‘which we extract different pairs of
1-fold samples as being both different from one anothér and also approximately normal.

With this example to keep our feet on the grougd, our first task will be to establish (i) above.
This is formally like the problem dealt with in 4;08,but simpler inasmuch as the samples, being
unit samples, are of the same size. Being samples from the same universe, they have the same
mean (M,); and the variance (V) of the distribution of each is the same, It also follows that

the difference (% _‘%) =D=(X,—Xy) - . . . . ()
"T'he variance (V) of the distribution“of D being the sum of the variances of the distributions of
the two samples, we may write ()

V=V V=2V N €1

If we assume for simplicity that the scores with which we are here concerned increase by unit
steps, so that the scale qf{f;hé’ d-score distribution is likewise unity, we may simplify the argument
of 4.08 by recourse touachessboard laysout, denoting by v, the frequency of the score difference
d in a particular cell'e with corresponding border scores X, of frequency y, and X, = (X, - d)
of frequency ¥ \'With no pretension to rigour, we may then regard a normal frequency
equation as a godd approximation to the exact value of , or of ¥, with due recognition of the
fact that we are sampling from different universes with definitive parameters ¥, and V,. On
this understanding, the postulate of statistical independence implies the product relation

Ve == Ya - ¥uy 80 that
1 — X,? 1 — (X, — Dy?
Y= iy, T (‘Eﬁ) vy, (“—27/—" )
[ng (X, — D)z] ' ) ) ) . . (i)
2r,

* We here state our null hypothesis in the most general terms.
ment estimations, the appropriate assumption may be as indicate
solely from instrumental error. If so, we predicate that the uni
different means but identical variances.

—— exp —
m.¥ g

When our concern is with before-after treat-
d below, viz. that the sampling variance arises
t sampling distributions of our universes have
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We may write

X2+ (X, — D)y 22X ¥ N
-—'9—'—2[/1“ T zl"u . : L)‘[’l: I .‘i 2[ .u
X2 XD (D DEo
e oA
(X, — 4Dy D
= 3V
Hence from (iii) ' ..
i ( D=) (N, - LDy
o expl - ) ex ; :
yc - TTVd f‘.p 2 [; o P l M
The frequency of the particular d-score D is the twtal frequency of wll cells t5&Mwith, obtainable
as in 4.08 by summation for all values of X, so that O\
1 o LA (X, - 1O .
~ - xp A R
Ya == ‘;Fd exp ( Q.Vd ) J_ ] “\P I',, “‘( 4 ’
To reduce the integral in (iv), we write N\

T X, — 1D v, SV
ST o s dX, ~/ Ty,
vi o VT, R 2

+ @ _ 1R pN ‘ ;= . |
.. j exp ~‘—-—-—-(Xﬂ 21)) . qu -_ .ﬁ\/ Vﬁ JJ & ir dx J .
@ R\ 1

Va
Hence from (iv) above N

N

S — D2

i == gxh ———
yd< ‘\/2?1'Vd P 2Vd
N : - o thiis ¢ the
Thus D has a normal distribotion with zero mean and variance 17, W . this know fthe
true mean of the sampling distgibution of d-scores from the same universe. If we had befor
us m such d-scores from 01i¢; and the same universe, we could therefore write as our ult
biassed estimate * of ¥, ,\“

OV ZD-0p FD*
Y A

& m m

In fact, we have-paly one such observation, i.e. m = 1, and our estimate is
o

\ ) Vd i D2 . . . . . " ‘ (V)

We have now to establish our second proposition that the mean valuc of an r-fold sample of
such normally distributed d-scores singly derived from the 7 universes of our r paired observas
tions is itself normal. We first consider the distribution of the sum of two d-scores from dif-
ferent universes, the treatment being essentially as above with duc regard to the possibility that

the unit sampling distributions of the two d-scores (D, and D,) may not have the same variance.

For reasons explained in 4.08, we write for the variance of the distribution of the 2-fold
sum V(S,)

V(S,) = V(D) + V(D,).
* What follows refers onl

! ] ¥ to the assurnption that we propose to perform a c-test. The ratio defined by i)
i not the {-ratio of 7.08.

L, . ; he
A 10 of For reasons we shall examine in Vol 11, we must define s, in the denominator of t
t-ratio, so that it is indepen,

L . ith
- dent of the mean, and we can fulfil this condition only if we define it in accordance W1
tvi) of 7706, Recourse to the c-test ’

is legitimate only if the sample is large,
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By ‘the method of 4.08 we derive a normal distribution of the sum about zero mean and with
variance as above. We may repeat the process for the sum of 3, 4 and so on d-scores, the
distribution of which is normal with variance

V(Sr) = 2Va
Whence from (v) above

V(S,) ~ 3D~

S%nce th_e r-fold d-score sum is normally distributed, that of the mean is normally distributed

with estimated variance
2
Vm = Y_(-S_,.) ~ E_D. .

r? 72

If we deigtc our estimate of the standard deviation of the distribution of the fhean d-score by
s, = V'V, and the observed mean of our d-scores by M(D) N
(NN

_VID

s ™

S'm
r N

For the purpose of an appropriate ¢-test, we therefore write £ o
MD) r.MD)  ZB
Sm VID? &Rf D

. (vi)

Example. Columns (i) and (ii) of Table 9 set\otrt heemoglobin determinations of blood
from the forefinger of 39 pairs of individuals (a)belore, and (b) after constriction of the vessels
by a tourniquet for a fixed interval of time. From column (iif) we have

M(D) = £D~8'89 =52 + 39 = 1-33.

&

From column {iv) ’ N
%\ 2D = 206
SO g, = V286 + 89
The critical ratio in acgp(&%;l::e with equation (vi) is
N 89(1:83) o
N /296 '

AN
1f we afeentitled to make all the assumptions we have in fact made in carrying out the last
test, we ar:%hus forced to the conclusion that the occurrence of such a mean difference between
B (after constriction} and 4 (before ditto) scores of columns (i) and (i) in Table 9 would be very
rare unless constriction did in fact exert an effect, To that extent we are justified in rejecting
the null hypothesis if : (&) we have good reason to suppose that attendant circumstances conform
to the theoretical requirements of the test; (b) the sign of the mean difference recorded
is indicative of the sort of change which would not surprise us. In this context we shall not
concern ourselves with the issue last stated, i.e. the prior probability that the alternative hypo-
thesis is correct. If our concern is to establish the reality of an increase, we must in any case
pay due regard to the issue raised on page 204, because the question to which we seek an answer
—and this is commonly so when our concern is to establish a real difference—is not whether
a difference of any sort exists. What we want fo know is how often we might expect a positive
difference (B — A) = 1-33, if the null hypothesis is valid.
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TABL

(.

(i,

Percentage FHiemoglobin.

Before Constriction

(xa).

64
72
58
70
58
85
74
&4
70
62
66

88

Totals 3035

(=)

66
72
38
70
58

3087

After Constriction.
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'That the conclusion, suggested by the mean difference form of the ¢-test, is in this instance
open to some doubt is evident from inspection of the figures in column (iii). We may classify
the differences as follows : )

Negative Zero Positive Total
8 14 19 39

It thus appears that only half the observed differences are in fact positive, a result which would
point to: () equal probability of getting or of not getting a positive difference, if confirmed by a
long serics of trials ; (8) only 3 to 1 odds in favour of a positive result where a difference is in
fact detectable.

Another feature of the array of numbers in column (iif) is suggestive, if we compare them
with those of columns (i) and (if). 'The entire range of figures in column (iii) ingludes only 11
different values. Since the only integer missing between the fimits — 3 and 9 is'8, we may
infer that the universe of d scores is a universe of at least 18 classes ; but we haveio information
to suggest that it contains more than 19 and as yet insufficient reason togassuffie that the dis-
tribution of individual d-scores from a universe of 13-20 classes will clogely approach an assumed
normal distribution, o\

Herein lies an important difference between the test undelj.‘(’iiécussion and that of 7.06.
When we compare responses of groups of individuals, we givé\full play to intrinsic variation
of our biological materials w.r.t. the make-up of the individual ; and we may well have
good grounds for believing that the sampling distributiéniarising from this circumstance is
approximately normal. In any case, we may assume with.eonfidence a universe of many classes ;
but it is not always justifiable to make such an assumption when we pair off observations as in the
If we make such paired observatigns on one and the same individual, we then
less completely ; and if the treatment involved is ineffec-
The nutl hypothesis thus

last example.
eliminate individual variation more or
tive, our main or sole source of residual variation is instrumental.
signifies that we are left with errors of Observation ajone. o

If the outcome is sufficiently clearcit to exonerate us from recourse to a test of significance
such a procedure is highly commendable as an experimental technique bringing what is relevant
to our end into sharper focus, QtHerwise, it carries with it a penalty to which we shotllld_always
be alert. For the number of\stale divisions consonant with competent craftsmanship in suc-
cessive performance of a.§ifaple chemical operation may be so few as to cast doul?t on the
assumption of approxigiate'normality w.r.t. sampling from the universe of the single pair. From
this point of view, ngtall experiments involving pairing of differences are comparable. Pairing
of individuals w.;.t\"lfii[ild, immediate environment, age, ancestry, s€ason and so forth has the
advantage of €mhoving a gross source of variation whose presence might conceal a clear-cut
difference liablé”to escape recognition by group comparison. To do so does not ehqu_na?e
other sources of individual variation which may well assure a sampling distribution 1mpl_1c1t in
the credentials of the c-test ; and the use of the ¢-test to assess the mean value of the pair dif-
ference is then legitimate. A new issue arises when we pair off measurements sepax:a?ed by a
short interval of time on one and the same individual. It then behoves us to scrutinise what
distribution of errors of observation is in fact consistent with the set-up.

In short, the Gaussian dogma referred to in 7.02 has too long dominated the treatment of
classes of experimental data to which its fundamental postulates have little or no relevance. .The
assumption of an approximately normal distribution of instrumental errors may be sometimes
appropriate to the end result of an intricate sequence of manipulations, and ?OSSIbly relevant to the
type of astronomical observations which occupied the centre of the stage In the days of Laplace
and Gauss himself. In the domain of simple repetitions of volumetric analyses of bleod or urine,
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it is manifestly inappropriate ; and the propriety of assessing cither the sivnitivanee of a difference
between the mean values of two series of such deternuenations or the sipvitinice of the mean valge
of a series of pair-differences which putativelyinvolve no other sonrees of viriation ealls for a lively
appreciation of how many numerical values are consistent with the proper exceution of the
experimental technique. Such considerations prompt us to approach any stutistical issue in the
domain of representative scoring by more than une avenue, wlhen that s possible.

While alert to such a pitfall, we should recall the issue rused at the cind o 7.05, where we
have seen reason to believe that a normal law of mean score distribution o very closely deseribe
a situation in which the unit sampling distribution is by no means 1wl Let us suppose
that competent craftsmanship prescribes an instrumental error of only - 1 <eale divisions in a
volumetric determination. It is unlikely that our three possible score valive -1, O and — 1
will oceur with equal frequency,  For illustrative purposes we may supposc < 8 that the investi-
gator scores either + 1 or — 1 with equal frequency about half as often asf 21o) that the investi-
gator is liable to overshoot the mark and scores i L, 0 and 1 with &% noies in the ratio
16:8:1. If (a) is true, the unit sampling distribution tallies closcly Wit teress of the binomial
(0:5 4+ 0-5)%, and that of the mean of 10-fold samples with that & Bhe hico i (0-3 + 0-5),
If (4) 1s true, the unit sampling distribution would tally with the €ofis of the hivanid (0-24-0-8)%,
and that of the mean of 25-fold samples with the terms of (U2 -89 Now -5 have already
seen (5.08) that the normal distribution closely fits a hip\s{:gqiul if rp 1) s s tae of each of

these two mean score distributions. \
The examples cited emphasise that the assufphon of an approximatels tormal law to
describe the distribution of the mean value of suefessive determinations of 1 icst score may

often be justifiable when the possible range of sugh test scores is in fact very restriciod, and when
the assumption of normality with respect touthe distribution of the tost scores themselves, Le.
errors of determination, would be grossly:i’ﬁcorrect. If s0, we can justifiably postolate as our
null hypothesis that the distribution ef differences between the mean of one st of determina-
tions and that of another is approgimiately normal ; but this does not signify that the distribution
of differences between single pail‘w determinations will be nearly normal. By reconrse to the
chesshoard, the reader will rcaﬁily see that the single-pair difference distribution with respect
to a determination involvipg'}a'scale division range of + 1 as above would have the range = 2
'I_‘hus we should in fact hgwe’a S-class universe of samples defined in accordance with the assump-
tions stated in {(a) ah ?é”%y the terms of (} + 0
When using j:hp\nethod of paired differcnces in circumstances which ¢liminate alt variation
except ef‘Pefiﬂ}e\ﬂt?ﬂ crrors in the absence of a real difference, much depends on whether the
-score s :{d)-the difference between a single determination before and a single determination
after treatmeett ; (b) the difference between the mean of repeated determinations before and
repeated determinations after treatment. In the last resort, the chessboard method st forth

in this chapter places at the disposal of the investigator who cares to plot the sampling distribu~
tion of his errors of measurement, a metho

: d of ascertaining how far the distribution of the mean
value of samples of a given size conforms

to the statistical test which invokes the normal law.



THE RECOGNITION OF A MEAN DIFFERENCE

EXERCISE 7.07

(Significance of paired differences.)

319

These exan.lples do not involve large numbers, and the student who has access to tables of the
t-test can with advantage compare the results of testing them by recourse both to the probability integral

and to the {-function.

1. Egg production of a number of hens in first and second years, (From Turner and Kempster,

Am. §. Physiol., 149.)

N\
& \t\,'
Hen First Year Epg Second Year Egg™ |
! Production. Production. ™
Y n.’s
1 145 s
2 152 S 126
3 194 136
4 206 \\ 186
5 145 \:. 147
6 201 'S 158
7 172 ONY 117
8 1884 7 185
9 200, 183
10 ~les 186

wX e

2. Ditto hens fed on I{}g\n{xs

A
#\J

\\s.'

L D
v/

thyroprotein per 100 lbs. feed. (Zb:d.)

\O
AS
D }; Hen First Year Egg Second Yea_r Egz
PR Nh : Production. Production.
N\ _ ]

\ 1 112 109
2 218 1189
3 192 132
4 1531 85
5 152 112
53 183 157
7 206 128
8 152 135
= 145 129
10 214 160
11 163 150
12 225 144
13 218 38
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3. Effect of obstruction upon serum urea in rabbits.  (From Horvin, Cfe 7o Physiol,, 149.)

sertin o e, B

Rabbit No.
Noroal, Trite vl e
1 411 [RSARR
2 1540 Ly 2
3 ROD PEAE
4 ERLN A
) a7 L1
6 RYES [RE R
ki 451 IR N\
g RIEET! PEtE
9 ®7-1 1741 {:\
A\

4. Ditio upon urea excretion. (Ibid.)

Uren Fxoredded (. b
o x'\\”
Rabbit No. - - &/
; Nnrmgll.(‘.} Intestiteal Crletrctan i,
—_ I___ .__.3._‘.’?')
N

1 \g.l‘g;ﬁ?lil RHTRER!
2 w04 HEE
3 NS 0-061Y TR
4 A 0-0ARY peul s
5 &\ 0- 1437 UARIST
8 ¢ e 0:11386 -0 1AG
75 \\& 0-1837 G-us 1l
BLH 5 0-1620 094
29 Ndd '

; 97 0-1163 00288

I £ .

: PN i .

'®

s il : A I
5' Addlthnal@rs of S].CCP gained by the use of two tested drugs_ (Fishcr, -‘jf(!ff_\-!h,‘(ff ,'1{8:1‘&00‘5
Jor Research Workets.) -
:w\"w

{
\
QO

Additional Sleep.
‘ Patient No. i - [ e

Divug AL . Drog B !
1 407 L1y
2 — 16 = 03
3 — 02 + 11 :
4 — 12 + 01 |
5 — 01 — 01 i
6 + 34 4+ 44 ;
7 + 37 + 55
8 + 0-8 1 18
9 00 4 46
10 + 20 - 34
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6. Effect of immersing body in water upon the vital capacity. (Hamilton and Mayo, Am. 7.
Physiol,, 141.)

Vital Capacity. ;
Suhbject No.
Out ot Water. In Water.
1 5160 3330
9 4160 3960 i
3 w0 | w0
e iy
5 5000 4760
5 3750 5440 O
7 5030 4670 A
5 4270 3820 A\
9 4540 4190 N
10 4500 4260\ ™
11 4760 4260 LN
12 4670 412{5?\ ‘
13 4480 3960%
14 4920 '.\'1;%0 !
15 5280 5100 |
16 4510 x’\\" 4390 :
17 6230 ¢ a0
18 5020 O\ 7710
19 5200 N 4600 ;
20 5930 8 7 5330 ‘
‘:s:‘&
.\}::‘
A\
.“\
- .
7. Haemoglobin response of milki{ﬁg\éfnic rats with iron added to food, (Smith and Medlicott,
Am. . Physiol., 141.) D
— NG —
‘ N Hetmoglobin (gms. /1007ml. blood).
S
;& - | . After + Weeks with
RN i Initial. Tron (D5 mg. /day).
N ;
PN - —
N 1 : 3.4 4.9
2 3.0 23
3. 31
: o | iy
' 5 37 i 2:6
G 40 . 3-8 :
7 29 : 38 ;
8 29 i 7-9
9 3-1 ! 36
' 10 28 41
11 2.8 i 55
i 12 2-4 3.3

21
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8. Scores in judging poetry (r’\hlmt-'l'r:ll)uc Test) before and after teneliing: of technical analysis.
(Peters and van Voorhis, Statistical Irocedures.)

IMar, Initial Seore. T =, I
! 6 ; .
2 3 [ .
3 5 ;

4 s A
5 6 +
6 3 3
7 5 7
8 3 R :
9 k) I A
10 3 6 \ \
11 1 0o A
12 4 2N \
13 6 . ®)
14 & AN
15 3 A 3
16 4 &(/ 7
17 2 \, 2
18 5 AN 7
19 5 S0 4
20 PR, 6
21 R N
22 3ONY 4
23 ’\b W >
24 P\ 3
25 08 0 2
N\ _—

9. Ditto after some interval of tlQQ without special tc1chmg. {Ibied.)

'
P31& QQ Initial Score. : Faud Seore.

> \,l'
QO 2

'\\w

T

- 4
7
(el =R e R R )

—
[ &)
'—-Ulml‘ammmﬁ-hWUI.&W&WQQ@M\J&IQQ&

GO LA TR0 D e 0 VD L0 A LD e 00 LT ] ]
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10. Weight at birth and on 10th day for 11 infants. (Davenport, Body Build and its Inheritance.)

‘ Weight (kg.).
Subject. T T
‘ At Birth. Tenth Day.,
1 : 2.126 1-928
2 | 3472 3-572
3 2-063 2:927
4 3-358 3-494
5 3003 3-147
6 3019 2977
7 3175 3026 ~
8 2-833 2.722
9 3-657 3536 \
10 3-232 2.941 R\,
11 3303 | 2084 ()
I o\ o
4 N\ I 3
N

708 THE LIMITATIONS O0F THROCWTEST

In the domain of the representative score, a normally dis}g?}ﬁuted ¢-ratio is the quotient of a
statistic such as the normally distributed deviation of a/mean d-score or of a difference between
group means and the standard deviation of the distribUtion of the same statistic in an indefinitely
large number of samples from the parent universes * It is possible to specify the latter exactly
if we know the variance of the unit sampling distribution, i.e. the score distribution of the puta-
tive common universe ; but in fact our knowledge of the latter is restricted to our single pooled
sample ; and the figure we use as the stapdard deviation or standard error of the distribution of
the group mean difference, being based\on an estimate of the variance of the unit sampling
distribution, is itself an estimate. IR 'S0 far as it is a good estimate, we are entitled to believe
that our observational ¢-ratio wilhbé normally distributed like the exact value of ¢; and it is
reasonable to entertain the hope;that such an assumption will not often let us down when we
are dealing with large samplés> Otherwise, the hazard is not one which we can dismiss lightly.

It will clarify the distifiction between an empirical c-ratio which we can actually determine
and a theoretical c-ratioYabulated for the normal distribution, if we here go back to our models.
Let us consider thewipean-score distribution of the 4-fold toss of 2 flat circular die with no pip
on one face and @>single pip on the other. The binomial (3 + 4)* defines the unit sampling
distribution o‘f\oﬁf universe ; and the variance of the score distribution of the universe, i.e. the
variance (V,) of the unit sampling distribution, is ($)* = 0-25. The variance (V,,) of the dis-
¢ribution of the mean score of 4-fold samples is accordingly (0-25 <+ 4) = 0:0625. To keep our
feet on the ground, we may check this by recourse to the mean score distribution, exhibiting,
with corresponding frequencies in the ratio 1 :4:6:4:1, score sums, mean scores, the devia-
tion of the latter from their own mean (3,) which is also the mean score (0-5) of the unit sampling

distribution :

Score sum . . . . 0 i 2 3 4
Mean score (M) - . ; 0 0-25 05 075 1-0
Mean score deviation (M;-My) . — 05 ~- 025 0 + (0-25 + 05

Frequency . . X . 0-0625 0-2500 0-3750 0-2300 0-0625
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From these figures our weighted mean square Jdeviation of the mes e distribution is
(0:0625) (— 0:-5)2 -+ (0:25) (— 0-23)2 - (M25)(1K25)" (DDGZAVIOA 0625 1,
The theoretical e-ratio of the mean score distribution s the rutio of tae e o seore deviation

to the standard deviation (e, - V) The latter is v OR0G25 0 0025 The e we have the
following binomial distribution of the e-ratio :

Mean score deviation (M,-Mg) . 0-50 0-25 ) 25 - {-30
¢-Ratio (M-M,) ~ 025 . . 2 [ 0 1 2
Frequency . . . . (MBS (-23(4)  1R37a0 IR (-0625

celintated the

Let us now investigate what would happen in the Tong rn b e il
7. In other

standard deviation of the mean score distribution in accordance with 10N
words, we regard cach 4-fold toss as more or less representative ot the gy listribution of
the score in the parent universe.  In that cvent a -fold tass with a =¥® = 40wl universe
of four items belonging to two classes with scores (x) of O or 1 andhe peinfoR Fhe mean
score (M) of the sample is 0-75, so that the sum of the squarg Qebidtivns i1} s given by

N

P

31— 0758)* - O - O 7RSS,
Our estimate of the variance of the distribution of thulec;ln in accordacer wit ivi) of 7.08 s,
therefore, S(x - M) ”'7:-3":\:
-1 (U
Hence an estimatce (s,,) of the standard dcvigtjt’ﬁ%' of the mean based on o sunple of this com-
position would be V00825 = 025, If thi:":{éorc s s 2, our sample usniverse 1w made up of

aay
*

two scores of 1 and two scores of zero, 50 that the sum of the square deviations i
20y 205y L

1 &\" o \
Hence V,, :'112" and s, = —---:_—\':- 0-288. . . . If the score sum is cither 0o 4, the sum of

square deviations is nccessanly zero.
Proceeding in this J\‘v':é]}'"\\-'c obtain the following results

0-0625.

Score sum . \\\‘ . . . 0 1 2 3 4
Mean s::are.({’ ) . . . 0 23 -5t 075 10
Mean sgm déviation (M-My) . — 050 —02 0 025 4030
Estimated” standard deviation s,, of

the distribution of the mean score 0 0-25 (-288 0-25 g

Frequency . . . . . 00625 02500 03750 u2300 00625

. In contradistinction to a theoretical c-ratio based on the theoretical value of oy, which i
md.ependent of th.e composition of a particular sample, we shall now denote our empirical estimate
of it by £, the ratio of the deviation of the sample mean M, to the estimated standard deviation
Sy computed from the data of an individual sample. In the foregoing table successive values
of tare — o0, -~ 1, 0, 1 and co. 'We may thus contrast the distribution of ¢ and ¢ for the 4-fold
sample of our 2-face die as fallows :

¢-Ratio . . . R —1 0 4-1 + 2

Frequency . . . 00625 049500 0-3750 02500 0-0625

i-Ratio . . — @ —1 0 41 +
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Comparison of the figures above shows that equally spaced values of the c-ratio are referable
to frequencies defined by terms of a binomial expansion ; but this is not true of the tail ends of
the distribution of the #-ratio. Hence the use of the e-test table, i.e. the normal distribution, to
assess the significance of an empirical c-ratio, i.e. what we here call ¢, is justifiable only if the
size of the sample is sufficiently great to ensure a #-distribution which tallies closely with the
normal. In what circumstances it does so is therefore an issue of considerable importance.

Under the pseudonym Student, W. S. Gossett published in 1908 an examination of the
distribution of the empirical ¢-ratio (¢) ; and tables of this function are now available in standard
treatises such as those of Fisher and of Kendall. Its derivation entails mathematical difficulties
we have not surmounted in previous chapters ; and we shall not deal with it in this volume. It
must here suffice to state that frequencies of corresponding values of ¢ and ¢ are very close if
the size of the sample is over 20. For many purposes therefore the older ¢-test is,quitc adequate.
In any casc, the small sample ¢-distribution postulates 2 normal distribution of the mean score ;
and a clear understanding of the less exacting procedure set forth in 7.08%7.07 is therefore a
necessary prerequisite to appreciation of its logical credentials. O

Yike the normal, the f-distribution is a continuous functipn\ with an infinite range.
Such a distribution can give a goed fit to theoretical expectation only if the number of score
classes is considerable ; and this is customarily true within the.dothain of representative scores,
since the number of mean-score classes of a sample greatersthari 1 must always be greater than
the number of raw score classes in the universe. For instagee, a model unit sampling distribu-
tion of (a -|- 1) classes defined by (p + ¢)° generates aldistribution of mean scores w.r.t. r-fold
samples defined by (p + ¢)'* with (ra -~ 1) classeg\In the domain of taxonomic scores, our
customary concern is with a two-class universe, i.¢.-with a unit sampling distribution defined by
(p = g), admitting the possibility of only 11’jclzis’ses of 10-fold samples. It follows that the
f-tost or Studeni-test, though a small-samplétest for differences in the domain of representative
scoring, is not a small-sample test appropriate to the assessment of proportionate score differences
of the type dealt with in Chapter 4. £

Tn this connexion, we may tegalla conclusion there sufficiently illustrated by our investiga-
ifference distribution in the taxonomic domain. There
d to a distinction between what we may call the super-
finite universe (i.e. universggh 4 large number of classes), which we deal with in practi‘cal_affa'.lrs,
and the infinite universéjof pure mathematics. In particular, df:riV&tion of the ¢ distribution
presumes statistical independence w.r.t. the square of the deviation of a sampl’e mean and the
estimate of the vagance of its distribution. In the domain of the mathematical infinite this
assumption 1s jpgfiﬁable. 1t is far from true of extraction of 2-fold samples from a universe of

21 score clasesi.e. a universe of which the binomial definitive of the unit sample is (3 4 )27,

though we Bdve scen that the normal curve is a very good descriptive device for the unit

sampling distribution of such a universe, and a fortiori for the 41 score class distribution of
2-fold samples extracted therefrom.

tion of the proportionate scare
are numberless pitfalls, if wepay no regar



CHADPTER 8
CORRELATION AND INDLEPIENDIENCE
801 Two Tyers oF SCIENTIFLIC GENFRALI- V10,

Qur approach to the applications of the theory of probability has Titherve viied ssues of two
sorts ;

(@) whether the composition of a given sample ix consistent with the soonption that it is
a sample from a universe exactly specilied by the requirements JNo partientar (e.g.
Mendel’s) hypothesis ; O\

(5) whether the composition of a given sample is consistent WithS e pstion: that it is
a sample from a putative universe of whicl our only (thl'r;y"’lll\fl'i_'l' el e e information.
is the composition of another sample taken from 1t, \

¢

Questions of either sort arise in the experimental sciliieds and in the scivoces which are
essentially taxonomical. The method with which we shalhacquaist ourselves 10 this chapter is
one which has little relevance to the former; and i ADTG Mcult 1o sssess 1t nacfulness justly

without due regard to what is peculiar to the latter N Jt is therefore fitting to start with a recog-
nition of what distinguishes enquiries of one sort Fdm enquirics of the other,

In its most elementary form a scientific laW*states that an event B happers when an event
A happens.  Such an assertion may signifyzte'i.’thcr of two sorts of association. distinguishable for
lagk of accepted terms as consequence (B follows A) and concurrence (B and \ v together). In
1‘:h1.s context, consequence signifies a gtimulus-response relation, as when @ (i) the occurrence B
Is increase of the density of a gas add)the occurrence A is external application of pressure to it;
(11) the occurrence B is reCOVCNom a disease and occurrence A is the injectinn of 2 drug.
_Sitqa?ions of this sort are the(mmin concern of experimental science whether its subject-matter
is living or otherwise; batlst is wrong to suppose that stimulus-respunse relations, such as
Hooke’s Law of tensiorlefipth or Schafer’s discovery of the action of adrenalin on the blood
pressure, make up thétbtal subject-matter of scientific law. Before it is possible to ask fruitful
questions it is nchss\ary to classify data; and the provinee of a large part of seience, cspecially
science concerped With living things, is classification with a view to reliable diagnosis or fruitful
prognosis. ¢“Fhat B happens when A happens thus includes statements of the sort : nearly all
people Wlt'h Blue eyes have fair hair. An assertion that the two attributes go together in this
sense entails no direct temporal relation between them. If it points to an ;uﬁcccdcnt, it points
to an antecedent common to both concurrent events ; and its verification is therefore a challenge
to explore the nature of the common antecedent by recourse ta ether sources of information.

At the operational level, a relation of consequence answers the question : what wist We ao
to bring about the occurrence B? A relation of concurrence answers the question : wwhere should
z;'? seek 1o find B E_”ith least effort 2 Where the criterion of both occurrences is all-or-nothing 28
al3:2;;;ogjiifssi‘;”—\({:ﬁz;ﬂise,ﬂ\lve can deal with concurrent association by recourse to nftftho;liz
fair hair reduces ‘to the issul{-e ) Zre Ishor 1s not a Slgnlﬁ(failt association between h.lll(;' L\t; g};w
eyes differ significantly from the roes t;.e proportion of fair-haired persons among people wit other
colour? From one poin of vi ‘zpot?l'l ion of fa‘zr—kazred persons among people with eyes ﬁf ;?‘11 the
question is: do tall girls mensm;at " IS'StnCth comparable with the c?nd in view W

e earlier  From another, the question last stated raises 4
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new issuc. . If both. occurrences are referable to a more-or-less scale, as are height and age at
menarche, 1t 1s Possﬂ?le to state the problem in terms which are the theme of the ensuing pages.

In‘suGh‘ a situation we have before us a set of paired cbservations. Each pair is referable
to one individual girl ; and we can regard each member of a pair as the co-ordinate of a point
on a height-age graph. If the whole set of points appears to cluster round a hypothetical line in
a way suggestive of a trend we may then ask ourselves : could such clustering arise by chance alone ?
To answer such a question in accordance with the practice of this book, it is necessary to set up
an appropriate statistical model, as we shall do later. First, it is worth while to notice that the
graphical approach to problems of the class fast cited has an altogether misleading air of
similarity to analytical methods adopted to establish physical laws.

A little reflection on the procedure involved in establishing a simple physical principle
such as Hooke’s Law suffices to dispel this illusion. The law of the spring (uf fensio sic vis)
is apposite, because the graphical relation between length and tension is verp simple, being
approximately linear over a wide range and in any case monotontc, i.e. havirg)o turning point.
By making paired observations on one and the same spring at fixed temperatire in one and the
same place, it is possible to plot a graph which shows the consequential ¥elation between the sus-
pended weight and the extension evoked by it. A spring of differgnt thickness or a spring of
different material would also behave in accordance with a straight\line law, but with a different
linear constant (elastic modulus). By comparison of sets of siceessive paired measurements on
the same spring of one thickness or of one material with sefs 6f successive paired measurements
on another spring of different thickness and of the same'\'material, or of the same thickness but
of other material, it is possible to prepare tables frofa which the elastic modulus for a spring of
given dimensions and material is calculable. At eyéry stage in the discovery of the law and its
subsequent elaboration, the possibility of presotibing how to control the behaviour of a single
spring in this way thus presupposes the possibility of assembling a set of successive paired obser-
vations on a single spring, complete as, a “set in the sense that they cover the range within
which interpolation is legitimate. RS '

Let us now suppose that we have no knowledge of Hooke’s Law, and that we have the
opportunity of making one paired b‘mgtk—wez}gkt) observation on each of a set of different springs,
each scemingly alike. If we fipdthat the points on a graph embodying our experience of such a
population of springs cluster™dround a line straight or otherwise, it will certainly confirm our
conviction that the springg’have much in common, and by so doing establish a criterion of their
{_but it will scarcely furnish sufficient hasis for the formulation of a law

taxenomic communitib lay
governing the behavieur of an individual spring. In the approach we are about to explore, it is

thercfore important to be alert at all times to the danger of a false assumption that functional
relations estdblished by statistical methods in the domain of concurrence necessarily admit of

any legitimate”conclusions in the domain of consequence.

802 ScorING BY RANK

er any set of individual scores, such as blood

If we arrange in ascending or descending ord:
sugar level, income or basal metabolic rate, we can assign to each member of the group a secondary

score, teferable to order in the sequence. On any such derivative scale of rank scores, the

ween that of one individual and that of his or her successor is necessarily equal;

interval bet : : : \
and we have already seen that scoring by rank has a peculiar advantage in that it entails a

specification of the unit sampling distribution. That is to say, scoring referable to rank signifies
sampling from a rectangular universe. For our present purpose, the rank score has an ulterior
interest which we may espress tersely by saying that it makes data marching in the same or 1n

opposite directions march also in step.
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Before making this advantage of the rank score more expliont, It o0 be Clear about the
meaning of a term already used. In the positive range, we sy o e ] e tollowing
functions as monmotonic ;' (i) y::5x ; 2, () v L0 (i) v b v i) AU
Within the range stated, the increment of A for a positive Incretment o e e avs positive,
as 18 true of (i) and (iii), or always negative, as is true of () aod fivie UL s ot true of 3
periodic function such as y .- sin , which has an intinite vanber of G - RRRHT

r dr
RS 2, g,t'[n, .

Nor is it true of a parabola such as ¥ 20 6By x¥ sinee the vidue of Ui Giecihon increases in
the range ¥ = — w to & - 3, and decreases thereafter. ~
When discussing whether two scores referable to the sume indis il height and

age at menarche go together, we shall assume that any lunctional I't‘l.l.li‘-:'ﬂ vt liope toestablish
between them is monotonic in the sense which defines what (1)-(iv) admwyeloee o contradistine-
tion to functions with a turning point.  Ceteris paribus, this mu;}‘n\.@ either tht verease of A
entails increase of B or that increase of A entails i decrease of BN B we repiosont paired scores
of individuals as points on a graph, a wide range of t'um‘lic;n&l\rvl;uimu 5o tent with this
restriction, but the functional relation between corrcspmulinﬁ rank scores oesigae. A\ single
and fictitious example * suffices to show that this 1s s0, ANE shadlsupp e that v Lave before us
the examination marks (crude scores) of six girls iIl,,ﬁ\;i& subjeets as folliws

Mary Lucy Glrirude Enid e MMuriel
A French . . 53 298% 40 81 13 60)
B Music . . 5 8 30 90 4 39

We now sct out the rank score corgesponding to cach of the erude scores

Rank . . \ 1\\ 2 3 1 5 3]

A French mark ., )82 60 53 145 40 29

B Music mark o 99 59 51 12 50 18
oy, &/

Since th,e C“%Elﬁ\\B' score consistently falls as we decrease the A score, the relation between
the two sets 1s menbtonic ; but corresponding decrements are not in fixed proportion, T'here-
fore th.e rt.elgpo’frship is not linear. On the other hand, the fact that a monotonic relation holds
good signifies) also that the rank score with respect to A is always the same as the rank score
with respect tO,B‘ Hence a graph of the B score a3 function of the A score in the rank scale
would be the linear relation B = 4. et us now consider a second fictitious example of the

same type, WC sce below results of a scriptural knowledge examination and the weekly pocket
allowances of six boys : )
Pupils |, | - James  Aaron  William Tan Neil Harry
Scripture exam, mark 55 40 60 95 45 80
Weckly pocket money 9, Zs. 6d. Bd. 2d. Is, 3d.

amples throughout this cha

, / ¢ insight by making up illusteati
author’s belief that number play of thig Sort is Ir::}tl

working over oft-cited recorded data which do not dj

pter is deliberate in the hope that it will encourage the
ve examples referable to suppositious situations. It is the
€N more instructive and provocative of self-criticism that
sclose conclusions of great intrinsic entertainment value.
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We may arrange the two set i i
Yy s of figures in order of merit as follows i i
) c >
as the figure of unit rank : ,couning the bighet

Rank . . . 1 2 3 4 3 6
Scripture mark (A) . 95 80 60 55 45 © 40
Pocket money (B} . 2s. 6d. 1s. ad. 6d. 3d. 2d.
In terms of rank, the boys thus score as follows ;

Pupils . . . James  Aaron  William Ian Neil Flarry
Rank & . . . 4 2 3 1 5 2
Rank B . . . 3 1 4 6 2 5

I'he s:uggestion conveyed by these figures is that there is some association bétween Biblical
prgﬁmency and monctary deficiency. To get the figures into clearer focus, s set up one row
—-it does not matter which—in descending order ; and place beneath each ifetn the corresponding

rank score of the other row, thus ; N\
Crude scores . . Ian Harry  William ]am:e:s;'t "Neil Aaron
A . . . 9 |0 60 ) 45 40
B . . . ; 2 3 6 N9 12 30
(in pence) .*'.\\'
Rank Scores : P\
A . . . 1 2 o 3 4 5 8
B . . . 6 5 A% 4 3 2 1

We now see that the crude B scores consistently rise as the A ones fall, but not by incre-
ments in fixed proportion. Thus the cride B scores are a monotonic function of the A scores,
but not linear. On the other hand, thj?—:}ank scores correspond exactly in reverse order ; and if
we plot the rank score B as a function of the rank score A, the relation is truly linear, being
B=({7—4). O

In the light of these examp
to any crude paired scorenix‘;\and Bre

(@) if there is perfe@, positive correspondence
Bisan increi;.;?:ing monotonic function o
exact direetOrder ;

(b} if thefg is perfect nega
that B is a decreasing

arc in exact reverse order ;
{c) perfect correspondence of either sort signifies an cxact linear relation between the rank

scores, viz. B = A, if positive, and B=(n+1—4),if negative.*

of analysis appropriate to questions of the type
illustrated above, wiz. : is it more or less likely that a boy who has a large pocket allowance
will do well in a scriptural knowledge examination ? Before exploring this suggestion, we
should recognisc that an affirmative answer to the question does not entitle us to say that a
higher all-round pocket allowance would raise the general standard of proficiency in scriptural
knowledge. The association might merely signify that parents who encourage Bible study iIn
* Tf the relation is linear, B = mA -+ Ay Sincem = (B, — By~ ({A, ~d)y=—1,B= Ay — A, Whend =1,
B=nand 4y =n+ 1. Hence B=(n+ 1 — 4}

lés, we may now state three general conclusions, with reference
ferable to one and the same individual :

between crude scores A and B in the sense that
£ A, the two sets of derivative rank scores are in

tive correspondence between crude scores A and B in the sense
monotonic function of A, the two scts of derivative rank scores

Such considerations suggest 2 method
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the home are more indulgent in matters of finance, that homes which provide cpportunities for
scrutinising the sacred text are more prosperous, or nuny other pussibiliti:
trouble us. No statistical technique is an adequate substitute for connuon <
of the materials to which we apply it.

With this reservation, let us now return to the figures of our tictitiin: chia of six boys.

which need not
wond experience

Taken at their face value, the conclusion to which they point scareely necils stwiing s and we
should not hesitate to draw it, if confronted with equally perfect rank corcespeonicnce of a class
of sixty pupils. Since the sample is small, the cautious investitor will, Tiwever, need sore

assurance that the result is not a fluke. Fortunately, it is casy to veter this guestion to a card-
pack model, We imagine that: (a) we have before us two incomplewe packs 0\ el B), each
of six cards, the ace, 2, 3, 4, 5 and 8 of clubs ; (h) we shutlle cach pack wuldhy =ide by side the
cards of each face upwards in a row ; {¢) we then find that vhe A and Bagdwie of cards which
occupy the same position in the two rows correspond like the pured ;-\.’xﬁmfﬁi1‘.;1iinn narks of the -
above example, Since we call an occurrence a fluke if a comparalilddecnricice woeald not be
a rare event in a game of chance, a statistical answer to the ques@M stated abe ve is an answer
to the question : how often would the result last stated occurdtdthe fong ron -

The solution of the problem is elementary.  Only onleh all pussible hner arangements
of all the cards of one pack can correspond exactly to a Jarticular arcangenent of the cards of
the alternate pack. In this case, the number of all peégible arrangements i 61 7200 If the
electivity of such a card event tallies with its long~rats frequency, the bettmyg ol are therefore
719 : 1 against the occurrence of the event under’discussion in a single trial. The conclusion
to which our fictitious figures relating to scriptiire marks and pocket money lead s s therefore
that the result is unlikely to be representative ; and the odds against the supprsition that
similar result derived from a class of tcn':pf_lpils is a fluke would be overwhelmme.

If we were content to base judgnéiits of this sort only on onc-to-one correspinlence, there
would be nothing more to say abauit'}he problem ; but the result of sneh an cnquiry might not
be so clear-cut. By and large, the best examinces might still be the most underpaid, if there
were no such exact reverse ordér correspondence.  Lor instance, we might get a result such as
the following : N\ S

AT .. .1 2 3 4 5 8
B .. .58 6 4 2 3 1

2 &

In a situation Sklch as this, we might content ourselves with regarding the issuc as a two-class
difference, cx’c})“er In terms of rank or of actual scores. If the former, we shoukd have

A under 4 over 3
Mean B 5 9

Th1§ reduces the problem to the recognition of a real difference in the domain of rq)l'cscntaﬁ"c
scoring, and raises no issue which is novel. It has the disadvantage of bheing an incfficient
statistic (vide 7.03) and another disadvantage which we shall sidestep in what follows, i.e. It
involves recourse to estimation.

The method of correlation we are about to explore approaches the issue with duc regard
to the rank relationship of cach pair of scores. When there is perfect positive correspondences
"che d1ffcrencta bfftweeen the rank of any item in the A series and that of the corresponding ite
in the B series is zero; and the sum of all such differences is zero. When there is perfect
thg:tl;:: ;Z;;ngg?r;lel}lce the sum of the differences, regardless of sign, is as great as _it can be-
difference is irrelevarliltl.i?rt}:emarks z_lpply to any power O.f the differences.  Since the sign of th‘?

¢ power 1s an even number, it is convenient to use the square difference
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and this has a special ‘meri_t which will emerge later on. When correspondence (or as we
shall now say, correlation) 1s perfect, the sum of the square difference will thus be esther
zero (positive correlation) or a maximum (negative correlation) to be defined later. Some-
where between the two must lie a mean value which is that of an indefinitely large number
of independent scts.

In this context, independence signifies no association between the scores of members of
the same pair of a set, as is true of two well-shuffled card packs turned face uppermost in order
side by side.  If our null hypothesis is that the two sets of scores are independent, our algebraic
problem will be to define this mean value of the sum and then to specify the frequency distribu-
tion of the sum itself in an indefinitely large collection of samples. When we can do so, we can
also specify the odds against a departure from the mean value as great as or greater than the
observed sum. If they are low, we are not justified in assuming that the figires point to 2
monotonic relation between the paired scores. A verdict of this sort invelyes no problem of
estimation. OQur null hypothesis does not postulate an unknown univergeyof which we have a
sample before us. It postulates a particular card pack model of which all relevant particulars
are inherent in the statement of the problem. A

If true correspondence between two sets of scores does in fack.exist, a different issue arises.
We have then to ascertain whether the structure of different.samples of paired scores is con-
sistent with the assumption that they come from a commept universe of which such corre-
spondence is an essential characteristic. From an elemer aty point of view, we shall examine the
implications of a null hypothesis of this sort in the next chapter of this volume ; but cur concern
in this onc is to explore the implications of a corvenient index of correlation only in so far
as its numerical vslue is or is not indicative of cgffésponclence as here defined between one set of
scores and another. In doing so, we must betalert to the sort of correspondence which correla-
tion signifies. The null hypothesis that thesdistribution of two sets of scores is independent
predicates that high values of 4 do not(go with high values (positive correlation) or with low

values (negative correlation) of B., Hence the conclusion that the distribution of two sets of

scores is not inconsistent with the p}xﬁibility of independent assortment is another way of saying
that we have no reason to infez,apy correlation between them ; but we shall later see (p. 349)
that the absence of any corrglafidn does not necessarily imply true statistical independence.
N

o
£\

803 SrearMAN’'s RANK ASSOCIATION INDEX

For economyof, sfiacc we may visualise the rank of the individual card of the two packs, as
in Figs. 74-76) By the pips on the face of a die : and we can get to grips with the ‘problem
most easily by first asking : what must the sum of the square differences be, when there is perfect
reverse order correspondence. The results shown in Fig. 74 are as follows :

No. of Cards Sum of the No of Cards Sum of the
in each Pack Squared Differences in each Pack Squared Differences
(n) (X&) () (Xd*)
1 0 4 20
2 2 5 40
3 8 6 70

To discover a rule we apply the method of the vanishing triangle, denoting the sum of the

square differences by . :
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Fig. 74.  Representation of the Total Runk Difference when there is 1,3(‘1]-\1‘1‘ :J'e"i:e'?'.n' arder coree pendenee,
" .1 2 3 \4 5 13
u, . 0 2 b i1 440 7l
Au, . 2 8 1205 20 30
A%, . 4 6 W 8 10
N, . 2 N ™2 2
A, U - 8]
Abyu, . 0
Since we start with a term of rank l\x»e make the approprmtc adjustinent of (vii) m 05, IR
\\ = (1 -} Ay 1,
W 1) (n— 2 — (- 3
=u + (n—1) Aul 5(4—" )25 ) g T (—n b e ) (- B Ay -t
Since the fourth ar%'%}ibsequcnt differences vanish it is not necessary to add any other (Crms,
8o that O
\ =D —2) e By(n—2)(n— -3)
SO = D)+ gt - (2)
% ] o 2 . -
\:4HMD{2+ﬂw_m+m o @}
_n(nt—1)
= T
This is the maximum value of the sum of the squarc difference, and we shall denote it thus :
nd—mn .
R N O

. 2 3 ; 1 ¢
The minimum value of 3d? is, of course, zero. For a set of # observations each assigned w0
rank values, we thus have

2'd? = 0 when there is perfect direct order correspondence.

s pz  W—m .
Ydt = R = 3 when there 1s perfect reverse order correspondence.
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Fig. 75, The sum of the Rank Difference referablé to all possible permutations of three pairs, the order of cne set

=

,{_)being fixed.

X\

Somewhere between these Lifr:;ft'é lies a mean sum (SZ) which signifies no correspondence
at all. If the number of doy fcsranked items is #, SZ is the mean of the sum of the square
differences for the n! permutitions of the n ranks of one series w.r.t. a fixed order of those of
the other. To determiné\S,, we can procced as in Figs. 75-76. If the sample consists of one
itemn, the two ranks ari}, necessarily the same, the rank difference zero and S& == (. If there

are two Ltems thcr@:ih;é’ two arrangements, Uiz :
N :

A 1 ) 1 2
1 p 2 1
i 0 0 12 e
Yya 0 2
'Thefmcan value of F'd* when # = 2 is therefore
=
0+2_4
21

From Fig. 75 we see that the mean value of Y'd*> whenn = 3 is

04+ 22)+26) +8 _,
3! '
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FiG. 76. The sum of éﬁz{nk Differences referable to each of the 4! permutations of four paivs, the order of one
O\ set being fixed,

'"\‘ N
From\Fifg. 76 we also see that the mean of X'd? when n = 4 is

um+3@y+u@+4my+m&+aum+Qum+4u@+4um+3gﬂiig@:1&
4]

By the same procedure we find that the mean value of Td* =20 when n =5 (Table 1). We
can thus make a vanishing triangle :

n . 1 2 3 4 5
Uy . 0 1 4 10 20
Au, . 1 3 & 10

Ay, . 2 3 4

At 1 1

Ay,
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Accordingly
2! 3!
3 _
" "
o g . . . . . . . . . . (i)
Hence, from (i)
S =1R}; and R}=12S}; . . . . . (iii)
The last relation suggests a very convenient summarising index of correspondence :
Lz .
p=1-— ST . . . - LI\ (iv)
_ g 8x& Oy
=1——=— - . Xo . {v)
When correspondence is perfect and positive, J'd* = 0, so that O
p=41 . .0 . . . @
When correspondence is perfect and negative, X'd* = 282 ’b{\,(iii) above, so that
283 o N
p=1- 5 = ﬁl . . . . . (vit)

)
When there is statistical independence the theoretical expectation of J'd* is its card pack model
mean value, i.e. S% and \\y

a
5'.'
o Sz

“l — — =
PR

0. . .. ... (v

\
Example. The two sets of rank scqés on page 330 will suffice to illustrate the use of (v}, viz. :

4 . NP1 2 3 4 5 6
B .5 6 4 2 3 1
aNOT L4 4 1 -2 -2 =5
&Y. .16 16 1 4 4 25

The total value"c)\f”ﬁl;: square difference is
2(18) + 1 + 2(4) + 25 = 66.

If there were perfect correspondence in reverse order, the total corresponding to p= — 1
would be

63 -6

—— = 170.

3

From (v) the actual value of p is

6(66)

1 — &6 (-886.

spondence, the expected value of Spearman’s

If our null hypothesis is that there is no corre
We therefore reject the null hypothesis, if the

coefficient defined by (v) is zero by (viii} above.
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value of p computed from our data differs significantly frong zero 5 but we foee sl o establish
a criterion of significance with this end in view. In short, we neal o bias the sampling
distribution of p in conformity with the assurnption that its mean vabie oo
Before exploring the propertics of such a distribution, however i vall e il 1o take stock
- of what the numerical value of P signiﬁcs, For samples O the sl =17 5 wiihi _J"-'.-H'f_r Ingh value
of p indicates a greater departure from expectation in aceordunce with the vl pnthesis stated
above, hence a less frequent occurrence than if no association exists. oo poibus, a high
numerical value of p thercfore signifies justification tor wreater confidenc 10 Hie existence of
association between the two attributes to which we assipn rank seores. FPlas 0 veessarily the
same as saying that p is a measure of greater or less correspondence hetween e iirdutes.

The convenience of 3'd® as a criterion of correspondence depemds ponde e a formal
identity we shall come to later (8.04-5), but it depends also on the Lt o ntmumis a
simple multiple of its mean value. EHence it is casy to devise a sunyagat e Badex which s
symmetrical, having the values - 1 for perfect assoctation (positive 5L( 1\1?-.-?-_;115-. vl wero for no
association at all. By the methods used above the student will cusileAerity o widement that

the mean value (S,,) of X'|d|, the numerical sum of the dilfeg@cds themeelie: rocardless of

sign, is given by RS
| \/ .
TR ()
N
An exact formula for the masimum value of Z|didepcnds on whether o s cion o odd. IEs
18 odd, the maximum (R,) is given by O
riesl 3
J.Qd - i',.}' ) - :}j'sﬂl . . . . . N (‘()

TN L -
*

For even values of #, R, == {n?.  Henge cquation (x) Is a good approximation for ooz values of
n, if m is also large. Spearman hag{proposed an index (£) based on 37w tiwe eriterion of
assoctation, but otherwise comp@ﬁ}lé to p, vIz.

A 33d, .
OV R=1-— %_‘(ﬂ =1 - _‘):_'_.({’. i ] . _ . {x1)
A S, |
When there is perfec:t.\'pksitive correlation X'fd| = 0 and R - 1. When there is no corees
spondence J|d| Tj@»«" and R = 0. When there is perfect negative correlatinn
™3 2|d| = R; . _é(n: 1y,

AN
so that R “"-\}4 0-5. Thus the “ footrule ”cocflicient R is not a symmetrical index of positive
and riciatwc coFrelation, and the negative limit stated is exact only if 2 is odd.

* X Btrictly speaking, that of the sum of the rank score differences or of their squares 19
a non-replacement distribution, since no item from one and the same of the two a-fold parent
universes can be present more than once in the n-fold sample of paired scores. Accordingly,
we have .derlv.ed the mean value of its square without recourse to the chessboard yisualisation
of sampling with replacement. Actually, the mean ditference and that of its square is the same
‘;heg E_‘ve do replace each‘ 2-fold sample before taking another.  Fig. 77 exhibits the lay-out for
:tnie :Dgtlier:stf}ilegl;i?; um\f{crse.: (n Z(G) of the cubical die. If 4, is the mean value of the d:dfer-
ences is 7. d.. and thest Dfa;mgle Z-folfi toss, the mean value of the n-fold sum of sm.xch d1ffe}11'-
ehescs d' » that ol the square differcnces is n. dZ. From the diagonal entries of the

ard, we derive the following pattern for the n-fold sum of all the differences :

MO+ 2 — 1)~ —2(2) (- BEG) ... 2w -2) - 1 - 1))

***E* Omit on first reading,
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SCORE DIFFEREMCE DISTRIBUTION FOR 2-FOLD SAMPLES.

UNIT SAMPLE CISTRIGUTION

B S O E s
TR EC SR
O 5

| z 3 4
LR IN  ED- IRA -
-1 &} | 2 3 4
B8 (- B8 AL AR R i
-2 -t o { 2 a A~

Il 1 TR TR T T .

-3 -2 -1 o] | 2 LW

R | | B B B B

-4 -3 -2 -1 o

g [ BB T R R
-5 -4 -3 -2 -1 o]

Fia. 77. Chessboardilay-out for all possible pairs of diffe.énccs between two rank scores.

Q"

UNIT SAMPLE DISTRIBUTION

For the square differences we have R ,,’~ .

#(0?) -+ 2[(n — 112 + (n — 2)22 4 (n — 33Nt . 2n — 2t + i — 1) =23 (n —

1

Since there are 72 cells in the chessboard <“
K@ M
if,&x ek g (n — 7%,
9 n-1
MY S,f,-——-n.d,ii—.Z(n—-r}r“,
o n4
\‘ n—1 2:@-1 .
N\ - [ T .
\ S2 22 7 . zi:r
By the method gwen on page 18 and on page 2 23 as an cxercise
} i 1){2z L 1
S 50 ot D)
t nin — 1)(2?1 -1
.2 z _rn = XD,
( +1)*

H

ongl a_n(n—l)z
neT T T2

-1 an—n+1)_ n*—mn
"(”6 )dn —2—3n+3) = s =

. Sa=

22
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We can also derive a formula for R3, the maximum value of 27d%, by reenume to figurate
summation formulze. When there is perfect correspondence of rank seores B
order, we have seen (p. 329) that B - (n -|- 1 — A). We an therefore write

21 in reverse

(B - Ay =(n+1—24)=s(u-= 12 e i ) LT

Z(B—A)*:(nw}—l)EZI — - DA AN
1 1 1 1
(B[4 b
=nln+ D) —4n 1) gl 1 1) - .”(” )([l 8 ., " oxkx
EXERCISE 803 ~
Calculate for each pair of the following sets of examination results : O\

- .y § '\ ’
(a) Spearman’s rank coefficient based on the sum of the square diffcrenecs.
(b) Spearman’s footrule cocfficient based on the modular sum of the diferences.

LV
| - . O o
Pupil. | English Literature. | Geography. : French. ) I"hvages. | IS,
|— o ——— R | —
4 72 ‘ 55 | 2O ' 54 55
B 85 | 68 . NS BB M (3
C i 62 64 N 74 #5 78
D ‘ 58 60 B0 i1 69
E 55 [ 35 A\ 59 s 42
F ‘ 50 ‘ 423" i 33 i 7 6l
G | 46 : 481 62 : 2 . 39
H | 45 | 29 54 > 50
I 39 ¢\J 51 _ 63 ! 34 73
7 ‘ 38 I s 57 i 2 26
K 36 W 56 ‘ 61 : 70 19
L ‘ M\ ‘ 71 46 ! 21 a2
M | 33 N 17 i 43 74 28
N 24 (" ‘ 19 i 42 . 57 42
0 \:g\ ' ,_ 37 45 i o7 19
4 N ‘ 42 | 29 ; 34 - 4
0 | a\M1s 28 | 37 ‘ 12 30
| R ] N | 43 18 -. 18 . 51
AN 12 32 | g | . : 09
i % Al - Pty
I T \ 4 6 ‘ 10 | 15 ’ kit 24

804 DISTRIBUTION OF SPEARMAN'S COEFFICIENT FOR SMALL SAMPLES

What we have derived in 803 is a convenient summarising index of correspondence, the
Humerlca]'\'alue Of_ which signifies little for our present purpose, unless we can siate the odds
for or against getting as great a value of p in accordance with the null hypothesis that there 1
Ho COI‘reSleldcn_ce between the attributes concerned. T'o do so, we must be able to specif}'
the frquency dl?.tﬂbution of all possible numerical values of p within the framework of the
assumption that its mean value is zcro. We have therefore to enumerate values of the sum of

t}tli square dufferences for all possible permutations of one set of ranks w.r.t. a fixed order of the
othet.
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TABLE 1
Frequencies of Square Rank Difference Sum for Samples of -5

, o : | i '
| s | L ! e | 8 | 4 s j[Zewn | Fen 01| o200 3 ! o4 | o5 |[zawn.
.. ! : e : '
| .
g Pl 3 § | oz T 0 29 — i = | =] = | &%} 48
i i3 E ? Tfaﬁ 4 24 d —_— — — T'g'l_i 576
! 4 — — E '24—4 TeF 243 28 — — — — '%0' 576
| 8 — — g '22_',; I?g 36 28 — _ - — T;F 784
| 8 - | - 4 . T 64 30 — 3y — i — I — | vis | 900
= = — e . 32 — L — | = — | 137 1024
12 — | = — | = rig | 144 34 — . = | = =g | 1156
14 - — - vy L 196 36 — — — ~ Thy | 1296
16 — — — | & iz | 236 38 — — | — Jx T | 1444
i8 — — - = 324 40 — — —m N 135 | 1800
| 20 | — | — | — ['A ks | 400 M
X i ) N
{4
Figs. 75 and 76 respectively lay out all possible permutatiohs‘of three rank score pairs and

\ 3
four rank score pairs with the corresponding values of },‘{iiﬁ})’{z. :0,2,4. .. : 3 2 When

S 3

n =3,
nt—n 27337
:—.-‘—’-L&— 28’
3 'f:‘:’s‘
L 2273,
A\
O 2d’ .
.\\s:l. p= 1 _ 4 N . (l)

If » = 3, we derive from F1g\?5 the following values of p with frequencies in the ratio
1:2:0:2:1 AN

\C 4

A9 a-pa-Ha-H0-9

When n = 4, O

:..\’::' ﬂs—ﬂ:64—4=20,

'\;m' 3 3

64 — 4
2: :1
S 5 0,

2

-'-P=1_"% O €1

By recourse to Figs. 75 and 76 we can thus set out the sampling distributions of o for 7 = 3 and

n = 4 as below :

(a) When n = 3
Jd? 0 2 6 8
y 3 } ; }
1-0 0-5 — 05 -10

Iy
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(b) When =4

Xd? 0 2 4 6 8 10 12 14 16 IS )
vy ode & & P o di Yo v e Y
p 100 08 06 04 02 O — 02 - 4 06 L (-0

The last distribution has an oscillatory character ; and the two distributions couform to ne
simple algebraical rule connecting p or Yd* with y in terms of 2. Kendalt, whi has made the
most exhaustive investigation of the sampling distribution of p has tabulated them for small
samples (7 = 2 to n = 8) as above. By recourse to his tabulution we cin test Ui probability
of getting a result numerically as great as the one cited on page 335, vix. p P-sEG{ 20d? - 66)
for six rank score pairs. For an equal positive value of p (- ! (886), M@ 4. 'The sum
Fd? is always an even * number, and the next even numbers respeelivebypdeltan 06 and above 4
are 64and 6. Whenn= 6and Ydt=64,p = —0829. Whenn 6 ¥l Gp {-829.
Qur problem is thus to find the expectation that p will lie outside ¢he/rnee 0525 Irom

Kendall’s table of 3'd2 (18.1, p. 396, Vol. T of his treatisc), we see thaththe expectation for X'd* in
the range 6 to 64, i.e. of p in the range -f: 0-829, is 6Y6 -, 72007 The expectatioe of a result

numerically as great as 4 0-886 is therefore 24 =+ 720 - - g CPhe odeds it this case ane therefore
29 : 1 against the null hypothesis, if we usc the modular likelihood (p. 204) of tle cvent as our
criterion of significance. We are at liberty to state thelssue in the less exacting gecior form :
what are the odds against getting a value of X'd* as gicat as 66, i.c. a value of pureter or less
than — 0-829. The expectation is then 12 = 720%nd the odds against are 34 - b Lither way,
we should have some reason to assume the grﬁét’cnce of negative association,

"The distribution cited above for n == § is distinctly bimodal and oscillatery. reealling the
distribution of the proportionate score_difference for co-prime samples (p. 172y, iar larger
samples the oscillations become less cdbspicucus, and the dip at the mean becomes loss striking.
When 7 = 8 the still jagged contelir of the histogram is suggestive of a normal distribution.
For small samples (up fo 8), Ken all’s tables give an exact distribution of Xd* {and henee of p
as explained above) based om\ehumeration of all possible permutations of one serica of rank
scores w.r t. a fixed order gf\fhe other as in Figs. 75 and 76 ; but the labour entatled in extending
such tables to include ,h@ﬁ values of 7 would be stupendous. T'o use this test, it is therefore
necessary to discovc%&n’ approsimate formula for the frequency of a particular value of p or of
a range of such y@ues. For reasons set forth in Chapter 6, e proceed first to exumine the
moments of thewdistribution of p.

Smce'thg distribution of p is symmetrical about its mean value (p - - 0) and that of Fd®is
also symmet¥ical about its mean value {S%), the odd moments about the mean are all zero. We
need therefore concern ourselves only with the variance and fourth moment of the distribution
of p and of 3d* of which p is a linear function, Since we are primarily concerned with the
distribution of p, it will simplify our task if we first establish a gencral theorem which enables

us to determinfe V(p) if we know V(Z'd?). This theorem (8.05) is applicable to any situation in
which one variate is a linear function of another.

* Since T 4% = ¥ RY = 21?’2’ TA* 4+ IBY =23 4% Nowd*=(4—B)-- A°+ B - 24R8.

Hence st zAz + FBE — QZAB.
o 2dt =22 AT — ZAB)

]

I
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805 VARIANCE OF A LINEAR FUNCTION OF A VARIATE

In what follows K and C are constants, and p, ¢ are variates connected by the relation
| p=K+Cqg . . . . . . (1)
We denocte the mean values of p and g by M(p), M{g), the squares of the mean values by M*(p),

M¥g), their variances by V(p), P(g), and their second moments about the origi
y Vip), , e origin by V),
Vig). In accordance with (iif) of 3.06, we may therefore write gn by Fip)

V(p) = Zy(K + Cg)* — [Zv(K + Cq)}*
= IY(K*® + C%g* + 2KCq) — (K Xy + CLyq)*
= K23y 4+ C2 Xy . g° 4+ 2KCTy . ¢ — [K + C. Mg N
= K2+ CV,(q) + 2KC . Mig) — [K+ C. M(9))* A,

= C2¥{g) — C*M¥g) 3
= C*{Vo(g) — M¥g)]
= C%. V{g) . . ,\.:. . (ii)

From the definition of p in (v) of 8.03, we may write it in 'téke;form p = K 4 C(Zd®), in which

K =1and _ . &
c——1_ =8
S3  ndeyH
. V(p) = @s V{Edz) . . . . . . (]11)
In accordance with the definitions on page 182, we have '
MEaye sy (Be)— (S8 . . - - - @)

"The extreme right-hand column ofable 1 shows the weighted values of (X'd?)? corresponding

to each weighted value of X'd’ from 0 to its maximum 252, By weighting each item in this

column by its appropriate fréquency (v) for a given value of » and adding the results, we get the

value of ¥y(Xd? in the abpye. For instance, when n = 3, we have
A\

R\ Edz- (ZdY" ¥ ‘ »(Zd®. (ZdH®.
S SEn —
\ ) 0 0 % 0 0
-2 4 3 3 5
4 16 [H] ] 1]
31 36 & 2 12
B8 64 P % 22
Total 4 24
= M(Zd¥9) | = V(Zd%)

In accordance with (iv)

In accordance with (iii) above
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By this method we may compile a table as follows :

‘ n St V(S PSS .
1 0 0 ; 0 it
2 1 2 I i |
3 4 ! 24 i B 4
! 4 10 100 100 1
i a Hi
‘ ] 20 St 110 1

In the same way, we find

1 6 7 3 N
Vip) 3 4 A0
And, in general, for values of n > 1 3
i o\
V = . 4 'ﬁ..: . . . .
(p) = & (v)

A.n exact expression for the fourth moment is obtainablc{\y adapting the foregoimy procedure,
iz, ¢*¢

I 3(25n% — 38?1';"%3511 + 72)
4 28n{n s Din — 1)°

W

When # is fairly large, this is approximately ¢ »

N\ 3 .

& - . . . - - . * ¥l

K nz— 1 ™)

The’ value ({f B, (Pearson’s ‘s\écH{cient of skewness) is zera, since my - 0 and that of Ba
(Pearson’s coeflicient of flatnesg)\from (v) and (vi) is approximately

,\:Z}\’} mg _ 3n—1? 8-
OY MDD @ h

oFf();’a stmemC?{,{ilstrlbutlon. which has a limited range on either side of the mean, the type
earson curye\likely to provide a good fit is Type II, of which the general expression 1 of

the form (x@(\} in (6.08):

(vi1)

1 PR
Y = X
a.22+1 B(I + 2, i + 3) . (1 — EE) . . . (Vlll)
The value of the constants a and 2 in the above is given by (xxiv)-(xxvii) of 6.08 as
at = 2Bym, T oz = 5B —9 (ix)
. 3— By 2(3 — By)
From (vii) we have
2.3n—1) 6
2,8 M, = s —
SN ey R G ()
s 3 J— .
3—8,=3— (n 1)— 6 . . . . . (xi)

(n+1) a+41
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Hence from (ix) @ = + 1, and hence from (vii) also

g B=—4)
5B2 9‘“ ?I+l . . . . . . (xii)

Hence from (ix), (xi) and (xit}
_6n—4) n+tl n—4
e X 5 e =% . . . . (xii)

, n—
w14 z= and 22+ 1=n—3. . . . . (xiv)

On substituting these values in (viii) we obtain ¥

Y= 1 1 T S
2ﬂ_3-3<n—2 n—2 (L =p7 e U - (W)
2 ' 2 o\
And for the total area enclosed by the curve, we have R N\
' 2 1 e O
e S N _ -
T la-p@e-1. - .
- 2 1] 2 'xi\\:

Kendall has shown that this integral, with due regqnd','t} the correct limits of integration, gives
a very good approximation to the expectation that a\walue of J'd? or the corresponding value of
p will lie within a specified range even for valucs O as small as 10 ; and he has prepared tables
for dealing with small samples by rccour:ge:fé"it. When # is very large Pearson’s Type II
merges into the normal distribution ; but a'significance test based on the assurmption of normality
by the use of (v) to provide the apprg;{riate value of V(p)is not very satisfactory unless 7 is at

lcast 40 s\ J
\\ -

\<&
1. Investigate the sa.t‘pi)}ihg distributio
like Table 1 for samplcisé}z to 5 pairs inclusive.
O\

n of Spearman’s footrule coefficient, and prepare a table

9, Pind a forfoula for the variance of the footrule coefficient on the assumption that its mean value
P

is zero, .,
. ]}

806 THE COVARIANCE CRITERION

The approach of 8.03-8.05 is applicable to two variates, if we can assign to each of the n

terms a rank which is one of the integers 1 ... ninclusive. It is then possible to define an
index of correspondence invol bserved sum of square differences and

its theoretical mean value. I s ratio in a form which suggests
a different criterion consistent "The usefulness of the alternative

expression which involves only t butions and the mean product

ving the ratic between an ©

t is also possible to express thi

with statistical independence.

he variance of the score distri

rL ) =2¥*1Bz+ 1,z 4 13, so that (xv) is reducible
n—4

T

* We may use the substifution of (xif) in 6.07, viz. B(,

to the simpler form : ;
n—2
B(n )
b 2
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of corresponding score deviations does not reside in the particular method of seering on which
we have hitherto relied. ' ' _ .

For pairs of rank scores the means of each series are 1dentical and the variances are also
identical, wiz. :
(n+1) N

= M,.
M, 7 b
F=1 1 -l 1 2
RTINS
rm1 -
nt—1
= = V
Vo= —3 ’
. ON
Since V, = V3, o = of and .
Vo= 0gg.05=- I, RGN
nt—1 O
Uﬂab = 12 R <
Hence from (ii) in 8.03 P\
Sﬁ, = 2no, 0. v
. : : v x’\\':
We may therefore write (iv} of 8.03 in thelform RS
_ 1 23
p= 2?3.3" Ga. T

&N
Znggoy — 2 d°
= = 00—,

: ()
) N ,2?’3 DTy
If we denote the rank of any score of thegA series as 4 and the rank of its pair in the B series by B

= (A M, — B— My

= Z(4> M)+ Z(B — M) — 2X(A — Mo (B — M)

Xﬂ?{&’+ nVy —22(4 — M,) (B — M,)

N

Enogo, —23(A—MY)B—-M) . . . . - - (D
By substitution of (i) in (i) we get
V p— 24— M) (B - M) (i)
N 0

W(_t call the mean value of the product of corresponding score deviations their covariance,
written Cov (4, B), i.e. for » pairs

Cov(d, By — Z2A—M)B—M) (i)

n

In this form'ula. the frequency (y) of any score is the same, being 1/n. More generally, for any
frequency distribution

Cov (4, B)=Zy(A—M)yB~-My). . . . - O
By substitution in (iii)

Cov (A, B
p=Cou4 B)

0z . 0y

(vi)
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Since p = 0 when there is no association, a criterion of associative neutrality (i.e. statistical
independence) for rank score pairs is that the covariance of the distribution is zero. "This is not
a propetty peculiar to rectangular distributions, such as that of rank scores. We shall now see
that it is a law of the chessboard device. Indeed, it is a universal property of a joint distri-
bution of two sets of scores which are statistically independent, though the converse (p.349)
is not necessarily true.

The same lay-out which we have elsewhere used to illustrate the double summation involved
in determining the mean of the distribution of a difference (or sum) and its variance will serve
to exhibit the steps of the argument, In Fig. 78 we have labelled our 4 and B scores respec-
tively from 4, to 4, and B, to B,, denoting the general B-score by B; with frequency w;. Since
the student should get familiar with the meaning of the operations invelved, no apology is neces~
sary, if we modify our symbols by: (a) denoting as 4, and B, the lowest score(velues, (b) em-~
oloying B; and w; in place of B, and @, in what follows. Thus our two variates are : (i} 4y,

s .. Ay, .. A, with mean M, frequency distribution oy, @, . . . Tp.& o, with variance
V,; (i) B, By...B;. .. Bywithmean M,, frequency distribution @@y « . . w; . . . Wy
with variance V,. ‘The covariance is given by the weighted mean ptoduct

F=a j=1b \\
Cov (4, B)= 5 3 v (de— MA@ M) . . . (viD)
Ae=14d=1
k=a jmb k=a:.'=v53 P ] b=aj=b
= z z Tyl A;‘B_f + ;MuMb 2 z Dplly — Ma 'Xi:% 'I.’k‘w’.;B,* — Mb kzl zl ‘U;‘w‘fAk.
k=1j=1 Vel i=1 =14=

F=14=1

1f we carry out the summation first by rows and thefl by columns or vice versa, as explained in

N
A

. page 163, we get

k=aj=b .k=a‘,g.i='b
SS ey = o 3 w1
¥=14=1 K=y f=1
k=a j=% PN kg j=b k=a
55 o {,.gf oS w8 =M, S v = M,
k=l j=1 h=1 j=1 Fe=l
pea =8 k=a j=b p=a
z z‘ékw}ﬂk—_—' z Ay z Wy = z vy = M,
K=1 =) F=1 i=1 Pyen
R T ELL
W Eov (4, B) = S S e 4B — MM, . - (viii)
.s’\ k=1 5=1
By the same grc:}(;sdurc ros s - ot
\\\: - z z Prtly AkBg = z TJkAk z ZUij
Ee=1l4d=1 E=1 =1
k=a
:Mb z vak
Bl
:Mb . Ma.
Hence by substitution in (viii)
d Cov (4, B) =0.

For an empirical distribution w.r.t. which y is the frequency of corresponding values of 4 and
B, we may write :

L Zy . (A— M)(B-M)= }_',‘y.AB+MﬂMbZ‘y—Mbe.A~ZVIaZy.B
=2y AB + MM, — MM, — M,M,,

- Cov{4,B)y=2Y%. AB — MM, (ix)
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Fic. 78. PRODUCT OF TWO INDEPENDENT VARIATES

J |

ko=nle=b
23wty
Bl s :
FREQUEKCY | ty | g ! L "
- - ‘ - ) - vl
VARIATE 1 | EN | ' Ay .
| .
: i
: iyl M
wy Hy gy ! woligm Ay I R woldgr oy wltg My
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Fie. 78.  Chesshoard summation of the covariance of the joint distribution of two independent s€0TeS:
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17 there are n pairs of values, we may write this in the form
Cov {4, B) = Zﬂ — MM,
7

By the analogous formula for the variance

UQZZAF__ Mz,

]
n

B2—

IRTL { 1 1
Whence from (vi) above we obtain the more convenient formula for computation
N

b $AB — n MM,
- . A G . X
VEA® — 13 (2B — nM}) O, ®
The lay-out for numerical work 18 as in Table 2. \ O
TABLE 2 ) '\'(.’
Ttems A At B o~ NB2 AB
A
o P— - i QN.*\~
A, 4y B O B A By
4; A3 R B} A, B,
_ .}} _ — —
A, \<@3" Ba n A, Ba
J— _—i.i:j ""_-—-"— —_— —_— —— -
Totals sANY 34t B s SAB
. Ve il ;
._ _:.00\." - '__________'___'__ —
f, '\\W ! M !
QD Moo= 24 w2
. ) M e

a\
and (x) define an alternative method of computing the rank correlation coefficient
h the above numerical schema. If 4 and B are rank scores as elsewhere
hat the covariance formula (vi) above has the properties of {iv) in
fues 0, 1 and — 1 respectively for independence, complete

tive association, For the example on page 330 we have

Equations (vi)
in accordance wit
defined, it therefore follows t
8.03 in so far as it assumes the va
positive association and complete negal
yA—142+3+4+5+6=2B,
L yA4=21=XB
M, =21 ~6=35=M,
A =1 —i—4-|—9—|—16+25+36:232=91.
5 AB = (1)5) + (28 + )3 + #)2) + (5X3) + (6X1)
:5—5—12—|—12—]—8+15+6:58.
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Hence from (x)
58 — 6(3:5)*

- S8 —-6B5°  _ _ _ osse.

Vo1 — 6(35)2] [91 — 6(3-5)%]

This result agrees with the value of p derived (p. 335) by recourse to (iv) and (v)1m 803, As
~ a computing device (vi) and (x} above have no special advantage ; but the method of deriving
them does not presume that the scores involved are specifically referable to rank as such, The
value of p is zero when there is no correspondence between two scts of scores, rank or utherwise ;
and its possible outside values are 4 1. Whatare its limiting valucs when the score is not a rank
remains to be seen.

The limiting values of (iv) in 8.03 when correspondence is perfect depend on. the assumption
that the two sets of scores stand in a linear relation to one another. ‘This is\peceasarily true of
rank score correspondence, because successive rank scores of either seried increase by equal
increments ; but a linear relation between two series of scores which @a™not incrense by equal

steps may also exist. Let us therefore examine the meaning of (yi)above on the agsInption

that the score A is an exact linear function of B. If so, A may fiacrease with £ or Jucrense as
B increases, and we may express this by recourse to a linegtyequation in which 7 aud ¢ are
arbitrary constants, viz. :

~NY;
A = h + B (perfect positive line{f;éorrcspondencc).
A = h — cB (perfect negativelinear correspondence).
When linear correspondence is perfect and poﬁii;‘e
M,= Sy(h+ cB)=h Tg\t cZy . B
= k + CMb . <~ . N . . . . . - . (Xi)
V.= XZylh + .:R)\*..L M:
= h“Z’y”—t—‘c“ y. B+ 2k Xy. B — (B* + etME = 2heMy)
== b2 WKV, + M) + 2heM, — h* — 2 My — 2hc M.

V=& . .
A 0‘;{7{ ”C . Vb . . . . . . R ) . . . (xiil)
Likewise . ,\.f Ny
\\ Zy.AB== Xy .hB 4+ }y.cB?

= kM, + oV, + M).
Hence by (ix)

Cov (4, B)=h.My+c.V,+c. M; — MM,
And by (xi) above

MaMb:h-iwb—i— [ Mg
o Cov (A, By=¢. V),
Whence from (xiii}
Cov (4, B) €. v,

= — ) v
a0, c. V, 1 ’ ’ . ) (x )

Similarly, if 4 = h — ¢B
Cov (4, B)

o0

1. ... ™
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(i) zero when there is no correspondence ;
(ii) 4+ 1 when there is perfect positive linear correspondence ;
(iif) — 1 when there s perfect negative linear correspondence.

fl‘ht.: meaning of the zero criterion (i) calls for special comment amplifying the eaveat in the
u'cor:_‘cl'udmg scntence of 8.02. Hitherto we have assumed the possibility of assigning to each
individual a unique A4 score and a unique B score in virtue of the method of assessment by
}'a:ak ; but the product-moment defined by (vi) or (x) removes this limitation, being applicable
w 4 system of scoring which admits a wide range of B scores consistent with a particular value
of 1t.h§ 4 score and wice versa. When this is so, our focus of interest is no longer shether high
individual values of B go with high (or low) individual values of 4. Our critegion of corre-
spondenm_: is whether the mean value of the set of B scores associated with ahigh value of the
A scores is high or low, or whether the mean value of a set of A4 scores asSotiated with a high
value qf the B scores is high or low. To say that A and B are statistically ihdependent signifies
that nelther. the one nor the other is true ; but the absence of any indigation of the sort of corre-
spondence implied in the preceding statement does not necessarilysignify that the distribution. of
the two sets of scores satisfies all the requirements of statisticaliidependence.

I'o say that two sets of scores are independent signifies that we can lay out their joint dis-

tribution by recourse to the chessboard device in accordafice with the product rule. Obedience

#o the product rule, as Aitken succinctly remarks, is in faaivthe quintessence of statistical indepen-
dence ; and a glance at the many examples of the usaof the chessboard device in previous chapters
suffices to clarify what such cbedience entails. We multiply every border score laid out at the
row margins by the same column border scote to derive the frequency terms of a particular
column ; and we multiply every border score 1aid out at the head of the columns by one and the
same row border score to get the frequency terms of a particular row. Thus the relative fre-

: . . A . +

quencies of B scorcs associated wit gpartxcuiar A score are the same whatever its value, and

the relative frequencies of 4 scotes associated with a particular B score are the same whatever
iated with any B score is the same

its value. JInter alia this signifi€s;that the mean A score assocl

and the mean B score assocjated with any A4 score is the same. When this is so, the covariance
of the distribution 18 z oo (Statistical independence and zero covariance alike therefore signify
that no correspondence F'the sort implicit in the customary use of the term correlation holds
good ; but it is mostiimportant to realize that statistical independence implies far more than
this, For insta.ns’zé} it implies that the variance of the distribution. of B scores is the same for

all values of A'sgéres and vice verse.
The sort of correspondence which is our concern in this chapter takes no cognisance of this

peculiarity of statistical independence, and it is easy to make up examples which illustrate
the fact that covariance may be zero, when it does not hold good. In a grid lay-out which
exhibits no trend of mean B scores as A scores increase or decrease and no trend of mean A
scores as B scores increase, it may happen that the range of A scores tapers out &t both ends
and that the range of B scores tapers out at both ends, the variance of B (column} scores and A4

(row) scores being greatest in the middle of the grid. If so, equality of the means and zero
covariance are alike consistent with a situation in which the cell entries do not obey the product

rule, as the following set-up suffices to illustrate :
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A Seores
Total Frequeney
I 1 2 of B Seores Wean

e e : .

0 0 ! 0 : ! ]
| . '
i ; i
B Scores 1 } ' 1 1 I 1 1 !
2 0 3 0 L I '
_— - _

Total Freguency of ! .
of A Scores 1 : 3 i __ . !
S | |
Aean ] ' 1 | : - :
. N\ |
EXERCISE 8043 ¢\

1. An umpire tosses two tetrahedral dice of the sort shown in Tig. 'I!]?~\I)IE!}'L'1' A vevornds as his
score (#,) the sum of the single-toss scores (x; and x,) of the umpire. @Myer B records as his score
(%) the difference. Set out the grid exhibiting the relative frequenciégof A and B scores at o single
trial (double toss) and investigate its properties w.r.t. (@) statistiddlyindependence, (&) 11+ numerical
value of the covariance of the players’ scores. O

2. A roulette wheel of 16 equal segments carries scor,c'\xl“;\‘z, 3, 4, 5 respectively allocated to 1, 4,
6, 4 and 1 segments. It rotates twice. Player A recorle as his own the score swmn und Player B the
score difference. Investigate this result from the sa’r.ne’ viewpoint.

3. Four dominoes respectively have pips onl }‘.h(gir left hand and right hand halves s follows:

. Teft Hand Right Hand
(i) R 1 2
(if) O 2 1
i) s\ o 3
(i\") 7 : ., 3 o

\X -
At cach trial the umpire layso%';c'm face down, and the players rearrange them in an order viknown
him. They do the same aftche has taken one, recording the score beforc replacing it. At cach 2-fold
trial player A records ask\stcore the sum of the number of pips on the left-hand side of the twe Jdominees
chosen by the umpire.';.: Player B records as his score the sum of the number of pips on the right-hand
side of the same twg dominoes. Set out the grid for the relative frequencies of A and B scores, and
investigate its {?cvpérties as above.

4. Investigate the effect of replacing the dominces of Exercise 3 by the following set:

Left Hand Right Hand
{1 1 1
{i1) 1 2
(iii) 2
(iv) 2 2

807 Trr UNIQUENESS OF THE RANK SCORE

‘To say that (iv) in 8.03 and (vi) above have corresponding numerical values when cOTres
spondence is cither perfect or absent does not in fact signify that the two formule must other-
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wise yield the i i
e 1 - i};li ssame nurInencal value when applied to the same set of data, unless the method of
! iy ame. In general, a value of p is lower if based on a count, measurement or
arbitrary number than a value of p based on a rank score
Let us exami is point of vi
e \Of 1.115 ;x umine an example of 8.{?2 from this point of view. The original data from which
e compiled two sets of rank scores in perfect reverse order were as follows :

A (Examination mark) . .35 40 60 95 45 80
B (Weckly allowance in pence) . 9 30 8 2 12 3

(Irm}tu(, of the identity es.tablished in 8.08, both the Spearman formula and the covariance
(proc uct-moment) formula yield a coefficient of — 1 for the correlation of rank scores ; but we
ir nipt i i ; .

o not obtain this result if we apply the latter to the crude scores. We then proceed as follows :

A. B. A B, AR,
55 9 3025 81 495\
40 30 1600 900 1200
&0 8 3600 36 € 360
a5 2 9025 4 N\ 10
45 12 2025 144« W 540
30 3 6400 g ™ 240
Totals 375 82 25675 e 3025

Whence we have \
M, — 875 = 6= 6250
M, — 62+ 6=108
5. M,M, = 6(10-3)(62'5) = 3875
n. M2 = 6(62§)(625) = 234375
n. Mg = 6(10:3)(10-3) = 6406
3025853875 —850 _ _ o8,

e —

cPT «/(25675?@"@73)(1174 w6 10923

vergence between the value of p (= — 078)
&to the raw data of the last example and the value of p(= — 10}
With that end in view we should

The gross numerical di calculated from the
covariance formula by recours
computed by recourse to the rank scores calls for clarification.
first recall the form of\the question stated in 8.02 above.

If our aim is tolassess what measure of correspondence €xists between two sets of data,
appropriate mcth(\aas" of assessing such correspondence should lead to the same result ; but
K which we have undertaken in this chapter. What we set out to seck was
tion : does any correspondence exist 3 If that is our aim, the numerical
dex we employ to describe such correspondence as seemingly exists

Gdence in rejecting the null hypothesis. A particular value is of

specify how often a value at least as great would turn up, if

such is not thé\tas
an answer to the ques
value of the summarising i
is merely a measure of our con
interest only in so far as we can
the two sets of scores were indepzndent.

To answer this question we must know the law of the distribution of the index within the
framework of the assumption last stated, and we have investigated such a law in 8.04-8.05 above.
We did so on the understanding that the scores we employ for the computation of our index in
cither form are 7ank SCOTES, taking as the model of our null hypothesis two packs of
cards numbered consecutively. On the assumption that choice of a card from one pack does
1ot affect choice of a card from the other, the elementary rules of independent choice provide
a1l we need to answer the question : what is the distribution of values of the sum of the square
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difference between corresponding paired scores ! "That we arc able to answer this question
arises from the circumstance that we know the unit sampling distribution of the nislel universe,
i.e. the frequency of each face score on the individual cards.  That the question racltis relevant
to practical statistics arises from the circumstance that we assign to cvery muenher of a group
a rank in virtue of the ordinal status of its raw score, thus imposing on the univese of choice a
law of distribution analogous to that of our model.

By using rank scores we thus prescribe what model 1s appropriate to an investistion of the
distribution of the index on the assumption inherent in the mull hypothesis, Le. that there is no
true correspondence, While this peculiarity of rank scoring gives it a great advantage In that it
makes it casier than otherwise to grasp the logical implications of the use of cur surmarising

index, it carries with it a penalty. Ipso facto, individuals with the same raw score (g exam-
ination matks or pocket money) have the same rank; and if individual scores wee s in this
sense, the universe is not rectangular. Consequently, the law of distribugigiy ifeedl on the
assumption that all scores have equal frequency is no longer applicable, AStrictly speiking, we
are on safe ground only if our sample contains no ties.  Otherwise, wesgannot leoirinntely rely
on the methed of 8.03-8.05. A >

If we do not employ the rank method of scoring, we arc pgf entitled to assuie that the
distributien of scores of either series in a trial is rcctangul;ut,\';m{l indeed 1t will scarccly ever
happen that it will be. Consequently, we have no reason toswppose that a particnlar nmerical
value of the index p calculated by recourse to the rank sguze would have the samwe frespicney in
the absence of true correspondence as the same numeti€al value of p computad by recourse to
the crude score on the same assumption. By the game token, the fact that recourse to ditferent
methods of scoring leads to different numerical waltes of p significs no inconsisteney inherent
in our demonstration of the formal equivalenge®af the Spearman equation in 8.02 and the co-
variance (product-moment) equation of 8088\ For samples of paired scores of a yriven size, the
frequency with which the summarising, iftdex will assume a particular numerical vahie will in
general depend on the method of softing we adopt; and it is sometimes conventont to use
separate symbols p,, and 7., for t t{summarising index we compute respectively by recourse to

{a) cither the Spearman g the product-moment formula when the score is ordinal ;

() the product-moment’formula when the score is a measurement, count or yrade other
than rank. \J

A

Frlom the poin}\éf‘{riew stated in the last few paragraphs, the dilemma arising trom the
num.erlcal inconsisyer\lcy under discussion is less formidable than it appears to be at first sight ;
but it would besncorrect to infer that the foregoing considerations suffice to resolve it By
met.:hods Whitbq‘are shall not explore in this volume it is possible to show that the sampling
varrance of the distribution of 7,, == 0 as defined above is equivalent to that of p - : 0, being in
fact (n — 1Y% Since the two distributions become approximately normal when the sample is
very large, they would then be approximately identical ; and it is therefore necessary to seek
for another explanation of the fact that the numerical value of re 18 N0t necessarily identical with
that of p for the same set of paired scores. d

A reason is not far to seek. The examples which prompted us to explore this inconsistency
suffice to emphasise an inescapable consequence of substituting rank scores for raw scores.
By so doing we force our scores into 2 mould which restricts their range of independent variation.
In this way, WE mhay 1mpose on a system. of paired values a closer correspondence than they
would otherwise have. In virtue of this fact we should expect, as we find, that 7,, would com=
mor_lly have a lower n}:merical value than p. Commonly, also, grouping of raw scores for con-
venience of computation has the same effect, as when we score measurcments or counts by 2
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mid-value for cach of a sequence of equally spaced intervals. We do so for instance if we specify
age by years, designating a woman as 41} years at any time inclusive between her 41st birthday
and the day before her 42nd, or in triennial age groups when we designate as 41§ years of age
any man who has attained his 40th but not as yet his 43rd birthday. When our pool of obset-
vations is very large, such coarsening of the scale of our scoring system reduces arithmetical
labour without much sacrifice of information.

808 COMPUTATION OF THE PRODUCT MoumeENT COEFFICIENT

As we have seen, Tahle 2 in 806 scts out a procedure for computing the correlation co-
efficient {7,,) equally appropriate for scoring by rank or by crude scores such as counts or measure-
ments specified by a mid-interval value. When a computing machine is not to hand it is useful
to simplify the work involved by change of scale andjor origin. O

An important property of 75, the covariance (product-moment) coeffigient of correlation
b, two sets of scores 4 and B resides in its identity with 74 the corredponding coefficient of
two sets of scores P and Q if the latter are respectively linear functions)of 4 and B. In other
words, changes of scale andfor origin of the correlated scores do nft affect the numerical value
of r. 'To demonstrate this we specify any such change of scale afid-origin by arbitrary constants
in the equation of the line, viz. : N4

P=hA+g; © :kB{tec
Tf B, and M, are the means and V,, V,the varianc@s’jc?f the P and Q distributions

¥ — Zy N PQ ':_"’iwﬂiwq (i)
F/ N O . . . . .
AV, .V,

ans oE%he 4 and B scores, the variances of the score dis-

If M, and M, are respectively the me

tributions being ¥V, and V5 K
P — Ty(hA + 8) = hEyA +22y

M, = %
,ﬁMa -+ 2

Similarly o
::Mq = kﬂ{fb —|L' C,

o DM, = hk MM, + ch Mo+ gh M+ ¢ )

,\Xch' M, + gh M, + g = MMy — kb MM, : . , . (i)

By definition. 3§

PO — MM, = ZyhA - gFRB + &) — MM, |

Z@‘Q T Wk TyAB -+ ch ZyA +gh XyB+ g2y — MM,
— hk XyAB + ch M, T gk M, + g — MM,

Hence from (i) sbore SyPQ — MM, = hhk XyAB — bl MoMo. . . : . {idi)
T ha
From (ii) in 8.05, we have V. — Vs and Ve= -
O NT V= bV Ve (iv)
From {iii) and (iv) by substitution in (i)
— M,M
fW:M_.EIL_"_,T‘ R )
v V(st.

23
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Subject to one restriction, we can thercfore label Ill]ll}lcl‘ic:l“}' our scores A Ay ete,,
by ay, 45 4y cte., and By, By, B, cte., by &y, by, By, cte,, Inany way mtf:at convenient for the
parent scores respectively. All that matters is that the new sets are lncar fustctions of the
scores they replace, In practice, it is an economy to label them O 1, 2.3 0 0w,

Example. The following {Table 3) fictitious data, sct out first for corputation by (x) of
8.06, refer to the heights of and mean weekly consumption of beer by twenty regolar members
of a men’s social club,

TADBLE 3

|
1 2 5, 1 ; :
A. B. ‘ O
Weekly O\
Height Consumption - A2 . 1=, £\ 14
in Inches. in Pints of . % N/
Beer, . N
—— R4 ;
53 21 2R LN i 113 '
56 12 : 3138 N 144 ; "7
56 8 3136 AN 64 FER
57 0 3249 \ u 1"
60 2 BGOBN_ Y 4 12
63 0 3969 ) 0 ) i
B4 30 4896 ; S tazn ;
65 14 RN 5] 196 sl
635 7 og Y4225 49 \ 455 '
66 7 L% 4358 48 462 !
87 B 4489 64 i 53863 :
68 21 4624 441 ' 1428
68 2 3 4624 625 171H)
69 BN 4761 100 B0
89 A 10 4781 100 | 690 :
70 0 4900 0 | 0
FAPN, ¢ 5 4900 : 25 ‘ a0
70 50 6 4900 36 : 120
I 12 5041 144 _ 832
2‘5@“ 2 5329 4 | 146
"\.,”;3 1300 200 85130 3386 B TR _
\\ o 24 | =B i pE sB: XL

For computation of r,, by recourse to (x) in 8.06 we have
M, =1332 =65. M7 -. 4225,
M, = 2330 =10. Mg = 100.

12912 — 20.65. 10

Tap = —
V(85130 — 20 . 4225)3386 — 20 . 100)
_ 12912 — 13000
V(85130 — 84500)(3386 — 2000)
88

VB30 x 1386
Tap = — (-0942,
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_ Change of scale is often useful, when we group data to make mid-range scores increase by
unity. 'The data of Table 3 are not sufficiently numerous to call for grouping of data; but we
may use them to illustrate the economy of effort involved in a change of origin by te:king the
lowest 4 score (i.e. 53) as our base line and setting the origin of the B scores as 15 without change
of scale, as in Table 4. 'The student who has then memorised the squares of the first 25 integers
—a useful accomplishment in work of this sort—will be able to perform all the necessary opera-
tions by mental arithmetic; and the result as shown below will tally exactly with the more
laborious procedure involved in use of the raw A4 scores.

TABLE 4
T ¢”\‘
A B N .
Height on Pint _ At e, ¢ \JyB.
Arbitrary Scale. - 4 NS
0 8 0 3¢°0 0
3 — 3 9 vo -9
A
3 -7 g VN 49 - 21
~¢\\ it
4 —15 18 AWV 225 — 60
7 —13 49\ 169 ~ 91
10 —13 LS00 225 150
1 15 N 121 225 165
im‘\ 1 12
12 —ae\D 144 -~
\\
12 N8 144 64 ~ 98
13 \ J 8 169 64 —104
t\n.
4 ' M -7 196 49 — 98
15,4 6 225 36 a0
L5 10 295 100 150
) 2
N 16 _5 256 25 — 80
16 ~5 256 25 — 80
17 —15 289 225 255
17 —10 289 100 —170
17 -9 289 81 —153
18 — 3 324 9 _ 54
20 —13 400 169 —260
=
240 = ZA — 100 = £B 3510 = ZA4* 188 — ZB® | —1288 = ZAB
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In this case we have :

1. Calculate for cach pair of the following sets of figures :

2. Calculate for each pair of

M,=12; My=—5; V, ==

Cov (AB) = 55

ab

3510
20

— 1288

— 44

..... — 144 - 315

V(B15)(GY-3)

¥

12— 5) - — 4

0-0842.

EXERCISE 8.08

CHESSE

~e .

(@) Spearman’s rank coefficient based on the sum of e square differen

(&) The product moment coefficient for (i) the rawiscores, (ii) the scorir
%4

(JoD. Bernal

Distribution of professorial posts in Arts, Pure Sciente'ant Medical Facultics
1938,

The Social Fun

{a) Spearman’s rank coefficient
(6} The product-moment coeff

In each ease show that the

by rank,

ALY,
' 4 $ 4 »
P,fohssors and/or Ileads of Departments of
University. S,
Q SWrts Subjects. Science. Aledic
Birmingham 8" 23 6 5
Bristol . AN 10 g 6
Cambridge\ . 46 23 2
Durhath W/ 20 16 9
Exeter\ ", 1] 5 0
Léeds . 19 9 7
{Tiverpool 22 10 13
Nlondon 100 68 78
" Manchester 25 9 8
Nottingham 9 10 0
Oxford . 79 27 12
Reading 15 7 0
Shefficld 14 7 7
Southampton . 9 G o
Aberystwyth . 15 8 0
Bangor . 13 5 0
Cardiff . 13 6 2
Swanses 8 5 0
Aberdeen 74 5 10
Edinburgh 40 5 17
Glasgow . 29 5 g
5t. Andrews . 23 11 7

the following sets of examination results the 3

based on the sum of the square differen
cient for the raw scores.

product-moment formula gives the same result as (a) :



CORRELATION AND INDEPENDENCE

Pupil, Classics. Mathematics. History, Divinity, General Science.
A 95 62 B7 42 73
B a0 74 & 65 20
[~ 83 61 64 38 55
D a7 54 61 35 84
B 88 78 43 80 32
F 80 95 83 32 92
G 72 32 52 75 87
H G5 45 44 87 53
ri 62 86 25 23 83
¥ 55 28 76 94 47
K 48 70 38 53 41
L 47 47 72 60 28, O\
M 45 42 30 44 37
N 44 50 87 20 9%,
o 39 98 63 48 -
P 36 3 2 34 \S17
0 31 65 24 27 N 45
R 26 17 13 30 38
RS 18 25 19 14 '\ ® 12
T 2 14 17 2480 9

N

357

8. Investigate correlations between the male mortality‘f@i"(a) Tuberculosis and respiratory dis-
eases, (b) Tuberculosis and influenza, and (¢) Respiratory digeases and influenza, by finding Spearman’s
rank coefficient and the product-oment coefficient inygach case.

Male mortality from certain causes, England,;fgg?;

o

(according to life table).

{Buczynski—Measurement of Population Growth, 1935.)

Successive
Age Groups
by rank.

N

o]

v

Pa

e oo

@7
3R N R S

Y
\< “ TDeaths per thousand from :
Tu circ?xlosis Disease of Respiratory System
\(alﬁ forms). {oxeluding Tuberculosis). | [PHuenss:
0-94 13-66 101
2-31 7-88 1-13
1-06 1:33 0-27
{84 (+33 0-20
2:97 0-88 023
5.17 1-08 O-60
4:8() 1-15 0-74
186 1-69 1-07
515 2-78 ;;g
5:46 360 35
581 5-28 3-09
550 656 317
4-80 731 321
346 812 328
2-20 9-95 3-40
1-18 12:27 4-29
0-41 13-95 520
0-22 19-45 702
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The schema embodied in Table 2 sets out the quickest way of arriving at
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809 Tue CorreELATION (GRID

for 7,y ; but it is not the best way of exhibiting the data for preliminary inspection.

more inpstructive to lay out the crude data as a joint fre
{Table 5). Each cell of such a grid shows the number (Vi) of items to whi
ticular A-score {4;) and a particular B-score (B;) in an assemblage of N paired
At the foot of the columns and right-hand margin of the rows we then recor
number of items with a score A4; and the total number of items with a score B

defirution

summation.

by definition :

For the means (M,, M,) and variances (Vi V)

LNy = N = ZNy.

The student should be able to insert in the above, as also below, the

FRRtH

a numierical valyge

Tt is then

quency distrtbution or correlation grid
chowe assign a par-
[ score values,
doas N,

; the total
.’\Tb e B}’

;lppl'npri:uv\i:nﬁm of each

If ,; is the frequency of the joint score A,, By, in the ceil of @hinn ¢ and row j,

Fis = Ny =

N.

7
 {

'\
Ny

Y

of the two scord Histributions, we may then

write
l s L,
M, =52 Nu. 4 and M, -..:@ym,. . B,
V, = ! N 2 W - ‘t ' .1 T 2 2
S Ez af Ai - -'Ma and ,I.(."b == NZL\' bi - B,-" — 1”5
TABLE 5
A Sgﬁks.
& Total Nu. of Aean
B Scores. i \% e — - UF‘ LT Alscore
0 i ¢ 2 3 1 Ntrics, (M)
—|-—a% el e ——
¢ Nuo %0" Ny Nag Ny ; Noag i 1%
— - Vi N ’
— s |— — | _ T | — e — ]
N\ | |
' Nou )\ NNy Ny Ny Na Ny , May
— A —— — L " - -
N - !
: ;—%3 v N Ne No |oNe | N, M
—_— | f— e — | | - I e ——]
- i_
3 Ni, Nia Ny, Nas Ny : Nay | M.
4 No L Ny Ny N N N, Mos
B —I———— —_— — - —— _ __.|_ . - - —
i Nes iE Nis N Nos Ny Nay | Mas
_ T ——  —— — | e - ——
Total No, of . . :
Entties. % Nox Nos Nos Nyy ! N
— | .
Mean - e
B-score A,
. LN M, M,, M, M, ‘
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If there is monotenic correspondence between the two sets of scores, we may usually recognise it
by a diagonal concentration of high values of N; from left to right downwards (positive correlation)
or upwards (negative corretation). In any case it will be apparent, if we lay out the mean
values (M,,) of B-scores associated with each column (4) border score as in Table 5 and the
mean values (M,;) of A-scores associated with each row (B) border score. If we denote as
M,, the mean B score associated with an 4 score 4; and by M,; the mean A score associated
with a B score B; the computation follows from definition, zzz. :

1 1
My = 5~ 2Ny . By and My = 52Ny 4
bi af

When we first set out our data in this way, the quickest way to compute the covariance is by
using either of the following relations to find the mean value M(A; . B;) of the p“r\oduct 4;. B,

1 1 \
— > N BiMo) = M(A:Bj) = > NulA:byg). O
N N N\

"These identities follow from the fact that A; is a constant factor of(bqu product 4, . By within
any column and By is a constant factor within any row, so that 7%

1 QO
M(4;.B) = NZZNﬁAs%
1 o
— szgig‘m,&

):’ 1
NNy 2B

1
\ = N"-EN bi(Afbef)<
e\J .
The covariance of the joint distribution is, of course, M(4; . B;)) — MM,

A%/



CHAPTELER 9

THE NATURE OF CONCOMITANT VARIATION

901 TaE UmPIrRe-BonNus MobEL

THE treatment of correlation in our last chapter focused attention on the possibility of validifying
the existence of correspondence between paired ohservations with a view to cstablishing a true
concurrence as defined in 8.01. From that point of view the magnitude of the Spearman co-
efficient is merely an indication of the unlikelihood that the paired observations are independent
in the statistical sense of the term ; and we have examined the means of assessing e likelihood
assigned to a particular range of values by the appropriate null hypothesis ssfidn the method
of scoring is by rank. The null hypothesis relevant to the issue so statedpastulates that the
mean value of the summarising index is zero. If the observed value is sigiificantly greater or
less than zero, nothing we have hitherto discussed confers an ulterior meaning on ity nomericak
magnitude. N

Educational psychology provides many examples of enquiries G which repeated trials of
pairs of tests applied to different groups of individuals yieldshigh, and in the sense implied
above, significant values of p* in fairly close agreement, \In such circumstances, we are
entitled to speak of a representative value of the summaris}irig index relative Lo the situation,
and to regard it as a measure of the concurrence of tWO)tests, itsclf subject to sampling crror.
If so, we are also entitled to ask whether two particular numerical values of p each significantly
different from zero are significantly differcnt fromfiene another. In this volume we shall not
attempt to find a-complete answer to this question ; but it is profitable to make a preliminary
exa.minatiun of some of its implications, if etily to bring into focus two totally different issucs
which arise in connexion with the use of eéfrelation indices and in cennexion with their sampling
distributions. ~N

Hitherto, we have discussed sampling from different universes on the assumption that the

act of choosing an item from onq.@niverse has no influence on the act of choosing an item from

a second universe or vice versdd) To give the problem stated in the last paragraph precision,
we need 2 statistical model,which places a constraint on the second act of choice, Hmiting its
range 1n a particular W&%‘zﬁ is in fact possible to devise many lottery models which fulfil this
requirement ; and theme which will occupy our attention in this chapter is of special interest,
because it permits uste get at the same time a close-up view of correlation both in the realm of
concurrence, ar}d»tpa’t of consequence, as defined in 8.01. In doing so, we shall consistently com-
pute the correlagion coefficient (p) by recourse to the product moment formula of (v1) in 8.06.

If each of two players tosses the same penny three times, the Aead-scores of either may be
0, 1,2, 3 at any trial ; and any of the four possible scores of one player may turn up with any
one of the four possible scores of the other. Let us now suppose that: () the two players each
foss once at a trial ; (B) an umpire tosses twice ; (¢} the total scorc of each player at the 8-fold
trial so conducted is the sum of his ovwn single-toss score and the umpire’s double-toss score.
The player.’s score has therefore two components, one the result of his own luck, one common
to that of his opponent ; and this imposes a constraint on the range of scores which his opponent
can have at the same tria] ag himself. For instance, we may supposce that his total score is 2.
This means one of two things—the score he gets in virtue of the umpire’s toss is cither 2 or 1.
:nlzlr(tll;s t(;h:‘?é?g iil?ﬂ?ilcl);i:ip for the product moment index regardless of whether we score by rank or otherwise,

th 7, and 7, used elsewhere in this' baok for sample size,
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If the first is true, his opponent’s score can be 2 or 3, but cannot be 0 or 1. If he gets only
one point as umpire’s bonus, his opponent’s score can be 1 or 2, but cannot be § or 3. At
any single toss, there is equal chance that either player 4 or player B will score 0 or 1, and we
can set out the ratios of their joint scores as a chessboard diagram. For economy of computa-
tion, we can use integers in the same ratio as the frequencies of the events concerned, if we weight
our figures appropriately throughout :

A

o 1
S
B
11‘1‘

Q!

This result may go hand in hand with an urnpire bonus score of 0,1 or,2 \in the ra.tio 1,2 L
This means that the total score of either 4 or B may be 1 or 2 twicelasiaften as it may be’:
(@) 0 or 1; () 2or3. We may therefore set out all the possibilities\with due weight to their

relative frequencies as follows 0N
4 4 R4 % 4
0 1 1 2 y \ 2 a
A\ i
N
0 1 1 1 2 2 2 ’7 1 1 ‘
RS 3
B B <=5
1 i 1 2 2 (\Yz 3 1 1
We can thus build up the composite table :
-~ Y A
o AN 2 3 Total
+8 3
- :
D | W ! 0 0 2
1"7‘ 1 3 2 0 8
O
\B'\’Q 0 2 3 i 1| s
o AN o 0 1 f 1 2
'"\: \ . Total 2 ‘| 8 6 2 16 J

mputing a product-moment coefficient w.r.t. the scores of

for co :
We bave now 4 O e mber n) of products is 16 and the sum of the products 1s

the two players. The total number
+ 1
10) (0) + KO (1) + 1D (©) + 31 (1) + 2L @) + %23)'(% ))(2) @ 41O + 1O

:O—[—0—|—0—|—3—|—4+4+12+6—|—6—[—9=44,
yap_# 1
w16 4
Since it is immaterial whether 4 o
to toss twice out of three times for him,

r B each tosses three times or each allows .the umpire
the mean score of cither A or B and the vanance of the
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score distributions w.r.t. either set is simply that of a 3-fold toss, so that 17, . g = M, and
Va = i’ = Vb

AR ‘
I o —ip—g e Cn(a B
Vﬂ . VD iz 126 and Ug. Op - _Z_,
LIV
? ——
Og . Oy T % :
T Pap T % s UG.

The mean score (M,) of the umpire is 2(3) == 1. Thus the numerical valts of p is exactly
equal to the proportionate contribution of that of the umpire to the playegs hican score; and
this is always true if: (a) the players toss the same die as the umpire ; ,@}th player records
the same number of tosses. If the trial consists of ten tosses, and théwumpire’s honus is the
result of eight of them, the value of p is therefore 0-8. 'Table 1 exKibits the hasic calculations
for the build-up of the correlation table. 'The marginal totals of e latter for the 13-fold toss
are in the same ratio as the coefficients of (3 4 $)'°. Thig'§§,)of course, in conformity with
the product and addition rules of electivity, as a single iteriywill suffice to illustrute. If the
player’s total score is 1, he may obtain it in two wdys: (i) an umpire’s bowus of 1 with
an electivity of 8(3)® and a personal score of zero with*an independent electivity of ()% the
electivity of the composite event being 8(3)% . (3)2 = 8(4)*; (i) an umpire’s bonns of 2ero
with an electivity of (1)® and a personal score ofil ‘with an independent electivity of 2(})? so
that the electivity of the joint event is 2(})%8"The two possibilities (i) and (i) arc exclusive,
and the electivity of a total score of 1 is therefore the sum 8()10 + 2(3)"® - 10(3)*.

The computation of p in this case i{:as follows :

2 AB=7(0) -+ 12(1) + 36(2) 4 61{4) -+ 144(8) + 176(9) + 56(8)
+ 336(12) +.822(16) + 112(15) + 504(20) + 392(25)
+ 024 504(30) + 322(36) + 112(35) + 336(42)
- 17@({9}+ 56(48) + 144(56) + 61(64) + 16(63) + 36(72)
} + 2(80) + 4(90) 4~ 1(100)

23110592
R
AB
N %36 =27 M= =M,
2AB 27 — 25
4098 - gi¥ly — — 25 =2,
Va = lg(l = Vb. Ty Oy == 2:5

Instead of supposing that the die is a coin (p = £ = ¢), let us now suppose that it is tetra-
hedral like those of Figs. 70-73; and three faces carry 1 pip, the other being blank. ~Scores
of 0 and 1 at a single toss therefore occur with frequencies 1 and 2, i.e. in the ratio 1: 3. Fora
3-fold toss the mean score M, = M, = 3(2) and the variance of the distribution o} == 75 = 3
If the umpire’s bonus is the total score of two tosses out of the three, as in the forcgoing example,



THE NATURE OF CONCOMITANT VARIATION 363

TABLE 1

Contingent Weighted Totals for Double Toss of A and B corvesponding to Possible Results of the Umpire's B-fold Toss

of @ coin with scove (1), 0, 1,2, . . . 8 Frequencies in the Ratio 1:8 ;28 :56:70:56:28:8:1,

u=27_ u=23 u==6
o 1 2 3 4 5 6 7 8
—
of 121y 3j % u2 s sizs % o8|
B1 2 4 2 4112 224 12 7(56 112 56
2| 1 2 1 5| s8 112 56 siza,\sﬁ 28

frequencies in the ratio 1:6:9. We may therefore set

the bonus score will be 0, 1 and 2 with
out the three possible results of the 3-fold toss as follows :
A A A
0 1 1 2 2 3
I — e
- | L

ol [ 3 1 L ‘ 9 27 \
5 i “ l ’ 2 ‘ 18 ‘ 54 \ 3 l 27 81 l
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The composite correlation table with 256 entries is

A score
0 1 2 3 Total
0 I 3 — é — ‘ 4
. ] - ‘ = S v
| - .
B score 2 — 18 63 27 | 108 I
3| — — 2 s s |
Total | 4 3 | 108 | tos - 236 |
- N
’ \‘\'
From these figures we have AN
ZAB = 7(0) + 15(1) + 36(2) + 63(4) -I- 54(6) -- 8HY) - - 1302,
XAB 87 4B ——_— §7O081 6
T256 160 7 256 0 TN 1616
Since o, . o = 2 AN

16 ~

Thus the foregoing result does not depend on Whether p is cqual to ¢,

' We can investigate correlation in a systérit 'involving more than two score classes at a single
trfal, if our tetrahedral die has one face. with 1 pip, two faces each with 2 and the fourth face
with 3 pips, as in Fig. 70. 'Thus all possible scores at a single trial arc I, 2 and 3 in the ratio
1: 2': 1. We shall give each pla e{;oﬁe toss in a 3-fold trial, supplementing his score with an
umpire’s bonus based on the re'su& , 3, 4, 5, 8) of a double toss. The bonus score distribution
then accords with the binomialcoefficients 1:4:6:4:1. The total score sct up is therctore
as in Table 2 : O

“:t\n
O TABLE 2
Y
s AN\ 4 5 8 5 6 7
Ve X | | | T T
HMERVE | ! 47 4 8 | 4 %‘G |12 6
4‘2 4‘2 51 8 | 16 8 6?12|24!I2‘
. ! . S R
5!1 2J 1‘ Sl o4 8 | 4 7 6 | 1z 6
L S !
6 78 7 s 9
e ST P -
|
6\ 4 ‘ 8 | 4 7] 1 2 ‘ 1
7|08 18| 8 8| 2 4 ‘ 2
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Table 3 exhibits the composite grid ;

TABLE 3
A score
3 4 5 6 7 8 $  Total
3 1 2 1 — — _ _ 4
4] 2 8 10 4 — — — 24
50 1 10 23 20 6 _ — 60
B B —_— 4 20 32 20 4 — 80
scove -
7 — — 6 20 2?& 10 1 60 \
8: — - — 4 10 8 2 | \2§r\
9] - — - — 1 2 AN 4
Total | ‘ 60 [ 80 ‘ 60 ‘ 24 \ o 255
The sum of the products is PN

O 1 48 + 198 -+ 30 + 400 - 475 -+ 192 + 1200 452 + 420
11680 - 1127 + 384 120 4 512 + 126 + 288 + 81 = 9472,
| DAB 92
T
"The mean score of the players is 6, so .t‘haE’Ma . My = 36, and
(3AB
\\’2;3 — MM, =1.
The variance ¥, = V; of the(3:fold toss is given by
(— 3)t 8= 2)* 4 15(— 1) + 20(0)* + 15(1)° + 6(2)* + (3)*

Q& 64
RN 96 __ 3
) =%4 =2
Hence the valu€ 8t o, . o3 18 1:5 and
\; 12 8
P =53 00

Again, the value of p is the proportionate contribution of the umpire’s bonus to the total mean
score of either player.

Let us now examine how the mean score of one player varies w.r.t. a fixed value of the
score of the other, and still within. the framework of the restrictions that: (@) both players use
the same dic as the umpire ; () each player has the same number of individual and of total
tosses. ‘The total number of tosscs each player records will be 6; and we shall explore the con-
sequences of varying the umpire’s proportionate contribution 'fromf unity (six tosses) to zero
(no tosses). Table 4 sets out separately correlation fables _for six paired tosses of a coin on the
assumption that the umpire tosses 6, 5, 4, 3, 2, 1 and 0 times, L.e. for values of p respectively

equal 1o : . 5.4, 3.2.1.
q 1;’6)'5'»'6)6:6)0’
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TABLE 4

CHANCE AND CHOICE BY CARDPACK AND CHESSROARD

Result of G-fold toss of Coin : Contingent A and B relative score frequencies with Mean (M) of rach Golumn and cor-
responding Relative Frequency of Column Total Score at Foot of Table

Umpire tasses six times (p = 1) Lmpire tosses five times (p (83 Uimnpive tosses four Nues {p -
0 i 2 3 4 5 6 1] 1 2 3 4 a8 V] | 2 3 !
0|1 01 1 vz
1 8 i1 6 3 | ) N 14} 4
2 15 2. 5 15 ] 2 | Fiy JEAt Al [
3 20 3 1 20 14 3 1 2 A U
4 15 4 w 15 3 4 52
5 ¢ 3 5 6 1 R AL
6 1 i3 | 3 [
. H T T T T “\\.
0 1 2 3 4 5 6 ; ! ; : lu‘ Iuﬁ' L.u:"' ‘IuH lul ; L \ yl“ : I:;J
' :_..._ - - - . . - "“.
1 6 15 20 13 6 1 1 & 15 2y 1A G o1 1 "'ﬁ 1o 20 13
"
........ ’\"\‘.
Umpire tosses three times (p = 0-5) Umpire tosses tzeice (p == U-3) ) Uimpire tosses once {p o
0 1 2 3 4 3> 6 0 1 2 3 4 3 x’l\\" {1 1 2 K] 4
L T L .
ol1 3 3 1 ol 4 e 4 NV 01 5 10 w5
1|3 12 18 12 3 14 18 82 28 92v 2 I 53 28 3% 60 U5
2|3 18 39 39 18 3 2 6 32 69 7@. :-1'4 12 1, 2 10 35 125 130 [
301 12 39 5 39 12 1 3.4 28 76 1K 76 2 4, 3 10 80 130 200 Isu
4 3 18 39 39 18 3| 41 12 444876 69 32 & 4 5 35 100 130 123
5 3 12 18 12 3 5’ 2 12" 28 32 18 4 ' 5 1 10 ki 511 a3
G 1 3 3 1 6 ! A\ Y 3 6 4 1! 6 1 A 10 10
. ';Q } " - ; _r’_ e — __r - .__T.
: 8 2 8 F 3 3 AN 3 e F T
1 8 15 20 15 8 1 A\ 1 6 15 20 15 6 1 1 G I3 20 15
.\ . e
9,
:"\"~
\,\\“" Umpire does not toss (p = 0)
LY 0 1 2 3 4 5 3]
:"\’: Y —
O~ 6| 1 6 15 2 15 6 1
1 6 36 90 120 S0 36 6
2115 90 225 300 225 90 15
3120 120 300 400 30C 120 20
4|13 80 225 300 225 90 15
5 6 38 90 120 80 36 6
6 1 § 13 20 15 6 1
3 3 3 3 3 ‘] 3
1 G 15 20 15 G 1

s )
36
4
113 1
50
R |
e
o a
(|

11y
56
1

1

m o1

BT

6 10

35 10

255
3 1
(1] _1:_
4

If the urnlpire tosses six times, so that neither 4 nor B tosses at all, their scores must be identical.
The relative frequencies of either set, represented by the figures along the diagonal, then corre-
spond to the frequencies of successive scores of a single 6-fold toss as shown above the upper and
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outside the left-hand margin of the table. This is equivalent to stating that the mean B scere
for any column is equal to the 4 score associated with it, and has the same frequency. Hence
the distribution of the mean B score for the six columns is the same as the distribution of the
B scores as a whole ; and the variance of the distribution of the column means is equal to the
variance of the distribution of individual B scores. Similarly, the variance of the distribution
of the mean (A4) scores of the six rows is the same as the variance of the distributions of the
individual A scores. :

When p = 0, 4 and B each toss six times independently. The means of the columns are
then equal, as are also the means of the rows. Hence the variance of the distributions of either
the column means or the row means is zero. If we label the variance of the distribution of the
column means as V(M,,), that of the row means as V(M,,) and that of the individual B or 4
scores as ¥ = V,, we may thus define N\

(a) our criterion of perfect correspondence by the relation V(M) — Vo = ¥ V(M) + Vas
{b) a necessary condition of independence by V(My) ~ Ve =0 = V(\Mabj’+ Ve

When, as here, the table is symmetrical it is more convenient to writ€ TM,,) = Vo= V(M)
and V, = V = V,. In this notation the criterion of perfect cogrqspbndence and a necessary
condition of independence are respectively 3,

(@) p=1=Va -V, 0
) p=0="Vau K"
These considerations suggest an examination of the tatio (V,, + V) when correspondt?nce is
imperfect. By reference to Table 4, which showsithé mean column scores at the foot with the
corresponding relative frequencies of column t3tals below, the reader will be able to compute

the variance of the distribution of mean B.Stores as follows in accordance with the familiar
formula in which M, (= 3), being the mgan of all B scores, is also the weighted mean of the
column means (My.): ‘*,\ .

.\\sz Z_}JMfa—Mf.
Y, g0

Usmpire tosses six times ('

RVl 6(1)2\4?'@2")2 +203)* + 15(4)* +6(8)' + 16" o _ 21 9 .3
" RN 64
Unmpire tosses j@;é times

v — L{O‘Q?‘{:G(1-3)2+15(2-16)2+20£)”+15(3-83)2+ B4-6)+1(58)* o _2a1. 9. 35

Unmpire tosses four times

o M 616+ 5@ 205)2 +15(36) + 643 +165)" _g_22 9.3

Umpire tosses three times
1(1-5)* + 6(2)* + 15(2:5)* + 20(3)® + 15(3:5)* + 6(4)* + 1(4-5)* 9_ 28 ~9=3
"= 64

Umpire tosses twice 2
1(2)? + 8(2:3)* + 15(2:6)* 4+ 20(3)* + 15(3-3)2 + 6(36)* + 14 938 —9=4%
ey - ______———-'—-_-
" 64
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Umpire tosses once

| 1(25)7 4 6(26)*+15(2:83)*-20(3)* + 15(3:16)° 1 8(33)* 1-4(35)° o wys

e - y RS

ki) 64 -
Umpire does not toss

v, =0

We now proceed to tabulate side by side with corresponding values of pand of # (the number
of tosses the umpire performs) the ratio V, = Vin which I7 = 6pg - 2

| |
u Ve :
| A
_ — - - | 2\
) i P .
0 o | e=3-0 o (b
1 1 ] N
1 Py TL T oz T 1
1 & &
1 1 a "\ )
2 [ b'_brfn 4’}
K T .. 2 1 1
3 ;' T T e\ p
A2
2 2 a3 2
4 ¥ " } r
- -
5 a5 25 . N/ 36 5
2 EE b e = | I
& 3 N\ $-3i=1 ] 1

A\ . .
From the table above the follo'\w;mg relation cmerges consistently :

pi=Va. =V . . . . . . (®

NS

In (i) V is the variance ofythe distribution of individual B scores, and ¥, is that of the distri-
bution of the column mEahs, i.e. mean values of B associated with successive values of 4. The
numerator varies bem’&ﬁ the limits: (a) zero when there is no tic-up between the two SCOrEs |
(B) unity when théte is one to one correspondence between them. At the two limits, we may
therefore regasd.the quantity on the right of the equation as the fraction of the total variance
attributable%& the association between the two sets of scores ; but nothing we have 8o far cstab-
lished entitles us to regard it as such except in the sense indicated by the use of italics. We
may write its complement in the form

l—p =~V sV . . . .

This leads us to seek a meaning for the residual component (¥ — V). When z == 4 and
p= _0-6 in Table 4, the column mean B for an 4 score of 1is § and the variance of the B score
distribution of the column as a whole is given by

2000 + 8(1)7 4- 10(2)° — 43)* . . 44
o = (§)® =i%-

In the same way we derive the variances of the B score distributions of other columns as at
the foot of the ensuing table :
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A score

_j} 1 2 .3 l 3 6’ Total

0 | o o1 b - — ‘
1] 2 s |1 1 | -- _ 2
2f 1 | w0, 2 | 2 s - 60
B score 3 4 ] 20 32 '@ | 4 - s
- — 6 20 . 23 o || s ‘

- - = 40w & oz i 24

6| — T — 1 | ! ‘ 4 ‘
Toma | 4 | | e I s0 e | er | 4 | ese |
Mean (M, ,) 5 | 2 | T I % .I tL |_F 13 | an |“__3—|
‘ I ; i ' ’ '\
Vadance (Vi) | | | e b w RN
i | a\A |
LD -

The weighted mean value (3,) of the variances of the column score distfiﬁixtions is in this case
L L | 1 “’1
4(3) + 24(3]) + 60(ZF) + 80G%) + 60EE) + 43P 4D 5
256 ) o
Now the value of V,, for this case (# = 4) is % and V is in:,a{\y; case 3. Hence we have
Vo + M, = § + §=3E7.
For any set-up in Table 4 the same relation holds gbod, i.e.
V- g@,’;}_ M, . . ... (i)
M, E2¥F — Ve

Hence from (ii} above
M, .
(iv)

QoM
:‘k A % . . . . . .

. N\ .
Evidently M, = V' when A and B sch'es are completely independent so that p = 0; and M= 0
- when correspondence is perfectydvel when p = 1. At the two limits the fraction on the right of
(iv) is therefore that part of thetotal variance of cither set of score distributions attributable to

their independent bchaviq),q;.\"

Without prejudice tovwhat ulterior interpretation we may appropriately confer on Vi, and
M, we shall henccforth, speak of the first as the mean inter-class, and of the second as the mean
intra-class, variangeys Some statisticians respectively refer to these two components of a score

explained and unexplained variation. This usage is exceptionable for a rcasen

distribution asdexp
which we shall e¥amine at a later stage (p. 389), Meanwhile, it is well to remember that variance

is not a unique measure of variation. As an index of the latter, it owes its pepularnity to its
mathematical properties rather than to any justifiable claim to semantic identification with

variation in general,

What we have hitherto discussed is the concurrent relation between the scores of the players
arising from the common source of variation, viz. that of the umpire’s contribution. The same
set-up permits us to examine the correlation between the score of the player and that of the
umpire, a relation which is purely consequential, For the case last discussed, 15, the toss of a
coin, when the umpire tosses four out of six times and the player twice, the lay-out is as

follows :
Umpire’s score . . 0 1 2 3 4
Player's score . . 1 2 1 2 3 2 3 4 3 4 35 4 5 B
Relative frequency .1 2 4 8 4 8 12 6 4 8§ 4 121

24
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Whence we obtain the correlation grid :

DPlayer’s Score
0 1 4 3 4 5 [§] Total Aeun Variance

—— - = . _h
o\l 1 ‘ 2 ‘ 1 l -~ -- — { 1 !
= 8 L R T . -

Umpive’s I i _‘___ o L I . ’

Scare 9| — ‘ — ] & n | & — — o4 ; :
3| — ‘ — ‘ _ s | s 4 — 1 \ Vo
N e p e S U s v
- I S i e AN - - :
Total | 1 s | 13 | 20 | 1s T 64 3

; E 4 i " i : - ! P T
Mean ! L 50k 4 P\ - : '
| i I i . o |

. C . (& .
For this set-up we need to distinguish the umpire’s mean. (J'Pf?}) score and the variance (V) of
the umpire’s score distribution. 'We then obtain in the usbal way :

v

1 o
M, =4(3)=2; M,=83)=3=M,
Ve=4B =15 VedDE) =1="7>

— L) + @) + 48) L& + 126) + 66) + 16)
SV 1 8(12) L 4(15) + 1(16) + 2(20) — 1(2H =T

v Cov (AU) = 23V _ M, 7 6= 1= Cov (BU).
r

po = Cov (QUIF VI Vo= 15 V) and o= § = sl

Irt} tﬁjs case tl}e sguarfzneﬁthe product moment index is therefore the proportionate contribution
of the umpire’s mednséore to that of the player; and it is also equal to the proportionate con-

tnbutlop the varggm}e of the row means V(M,,) makes to the total variance (V) of the player’s
SCOTE, SINCE o

\«; . VM) = 4(12%) + 16(22) - 24&312) +16(47) 4+ 4(5Y) 4
VM) Ve=1 5 (@) =3

= 1.

If the reader will make similar calculations for the 6-fold toss to which the umpire contributes
1,2,30rd of_the total, he or she will find that the relation here stated also holds good, wiz. ir
cach case p? i.e. the square of the product moment index w.r.t. the score of the umpire anc
that of one or other player, is the propertionate contribution of the umpire’s mean score 1o tha
of the player, as likewise the proportionate contribution of the variance of the player’s mear
scores to the player’s total variance. In this context, we are therefore entitled to speak ©

p? = V(M,,) = V, as the explained variation. Since the row variances (V) are identical
being 0-5, we have for their mean value M{(V,,) = 4.

. V(Muu) + M(Vau) — 1 _]r _%. — % — V

a
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s ne —— 279 1otAL
oG P
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Fig. 79. The Umpire Bonus Model. The umpire and the two%léﬁrs {4 and B) draw from the same pack.
The umpire picks two cards, replacing each card taken beforedrawing another, 4 picks one card and replaces

it before B also picks one card. The total score of either 4 ar/B is the sum of that of the umpire and his own.

"
N

«ad

EXBRCISE 9.1

For each example determine p w.r.t. theleoncurrent relation (pg,) of the two players and the con-
sequential relation {p ,, or py,) of the séore of the umpire with that of one or other player. Show that
the covariance is the variance of the }npire’s score (#) distribution and test the identities
£ H#
N @p=03 B pP=VatV.
N\

1. 'The umpire go}sse“s a penny three times. The two players each toss three times, scoring a

head as success. &y
: SN
2. The mpite tosses the flat circular die of Fig. 67 four times, the players each toss the same die

four times.

3. 'The umpire tosses the tetrahedral die of Fig. 70 twice and the players each toss it twice.

4. The umpire tosses an ordinary cubical dic three times, each of the players tossing three times.

5. 'The umpire tosses twice the tetrahedral die of Fig. 73, each of the players also tossing twice,

8. The umpire draws two cards with replacement from a full pack, scoring spades as success.
Each player then draws two cards with replacement.

pack with replacement scoring picture cards as a

ire draws three cards from a full
T e mivors ca g each card before another draw.

success. ‘The players each draw three cards, replacin
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8. The umpire and each player draws singly three balls from an urn containing for Black and
one red ball, replacing each ball before drawing another and scoring red as snecess.

9. The umpire tosses a penny twice, each of the players tossing three times counting heads as
successes.

10. The umpire tosses twice the tetrahedral die of ¥ig. 70, onc player fossiite tliree times the
circular die of Fig. 67 and the other tossing once the tetrahedral die of Iig. 73.

9.02 Tue UnresTrICTED BoONUs DNMopeL

We have so far explored the properties of the umpire bonus madel subject to two restrie-
tions : (a) that the two players record the same number of independent tegfes ; (4] that the
umpire and both players toss the same die or draw cards with replacenmnd from the same
pack. Within this framework, the long run expectation of winning the-loitdst is the sume for
each player. 'T'he mean score of one player is the same as that of the ¢ther, and the variances
of the two score distributions are the same. By recourse to numgfigal examples, we shall now

explore the consequences of removing these restrictions. ",

Let us first suppose that the two players (4 and B) agdhe umpire use the sume die, 2
ccin or flat dise with 1 pip on one face and no pip on thedther.  If the umpire tesses twice,
A once and B twice, the set-up in conformity with 011;{{?(;\&0113 procedure is as {ollows

X
(a) Umpire seores (b} Umpz:rc: seores (e} Umpire scores
zero R 2
A N A
0 1 AN o 2 3
l__"ii'_i ) ; i .
0 ‘ 1o ‘ e | I ‘ o SR
I ¢ \e
: \ e el e e ——
B 1, 2 ‘ 2 ! LN T T | 30002 2
21 1 ! 1 NGO 3 2 o2 T u
! AN ‘ | :

O
The composite'Qt}\{rélation table for the 3-fold toss 4 records and the 4-fold toss B records
is therefore as belowa:
N

~O A
\V 0 1 2 3 4 Towl  Mean
—— | . . | _
0 | 1 || 1 |~ | — | — oz |03
1| 2 |i 4 | 2 | — |__'__'_i s U_i
2 i_1 s || 5 _| 1 |_ e | 15 i
Bs| — I o Ty oz . ‘ s 2. ‘
s = [ s _; 1L |2 |25 |
Total | 4 | 12 ‘ 12 |i 4 | 0 'T:_h_!
Mean ‘ 1 ‘ L Z | s " 0 |—2-‘-[) e
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From the foregoing tahle we obtain
M,=15; My=2; MM, =3:
Ve=33=075; Vi=4(1)*=1; V,.V,=075.
JAB _5(0) + 4(1) + 7(2) + 5(4) + 2(3) + 5(6) + 2(9) + 1(8) + 1(12)

” %) =1
Cov (AB) =% — 3 =05,
0-5)2
R O

Tet us now compare this value of p? with the two ratios V{M,,) = V, == 4V(M,,) + 3, since

V.= %, and V(M,,) = V, = V(M,,),since ¥/, = 1: ~
V(My) = 76{(0-5)° + 41)* + 6(1-3)* + 4(2)* + (25)%} — (1-5)2 =025,
o V(M) = Vo = 4V(M,,) =3 = 4(025) = 3=} = pb,. LD
V(M) = 312 + 3(1-6)2 + 3(28)> + 3} — 22 = & >

S

o V(M) + V= V(M) = % = piy- >

't ¥ ;

™
Once more we see that the identity of p® with the prop&‘r}mnate inter-class variance is
equally applicable to either the B scores alone or the A sceres alone. Since the umpire’s
mean score M, = 1, his proportionate contribution (r:a)ztds\the mean score of A is § and his
proportionate contribution (¢;) to the mean score of B,isz\g,'so that

Goo=%.3=¥=0p%. . . - . . (i)

Thus p is in this case the geometric mean.gf;%l{e respective proportionate contributions of the
umpire to the two players’ mean scores. ~3 second example reinforces both conclusions sug-
gested by this one.  We next suppose liat the umpire tosses the same die four times, A twice
and B three times, so that ¢, = £ ar}d’% = #&. The set-up is as follows :

X\

Umpire scores zevo O\ Umpire scores 1 Umnpire scores 2
0 1 235" 1 2 3 b 3 4
: A - : _
0 1 . i »\:1\ 1 4 | 3 I 4 2 ! 6 [ 12 8§ gl
1| 3 6 L} 3 o 12 | o ‘ 12 3, 18 ‘ 36 18
AN R EE s 2 24 i 12 1118 | % 18
3 ? \\‘ 2 1 1 oy 8 ‘ 4 3 6 ‘ 12 [

Umpirve scores 3

3 4 5 4 5 &
R A —_

3 4 ‘ 8 4 ‘ 4 ‘ 1 ‘ ) ‘ -
FREENT 24 12| 5. 3 i 6_| 3
5| 1z | 94 | 12 8 ‘ 3 ‘ e | 3 |
8 4 8 4| 71 1 ‘ 2 |1 |
| ] I R
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The composite table is as below :

A score
o i 2 a 4 5 & 7 Tl Aean
| S .f
0 1 2 I i _ _ : J— - 1 :
I 3 10 o4 | — . o
2] 3 18 33 ‘ 24 | 6 — | - 54 oo
3 1 14 43 ‘ 52 ‘ W4 e - o’ t
B ! e e e o e e e . —
seore 4| — 14 26 ‘ s20 0 o4 1 f40
5 — — 6 ‘ 24 0 oan w3 o S
- - ' . N —
6| — — — | 4 1w 3 2 '
' - e 7'\ -
A e e PR T
_ D N —
Total | 8 48 120 | 160 120 | 48 SO 0 542 ;
Mean : l lu-z 1 ug ‘ _9.01_ '_-un | _:nu_ n‘? 0 5 B
i | \ 1
: w\J
'x.\
"

The student should check the details of the calél:xkition, of which the following fignres will
therefore suffice ,:,’:1~
MM, =3(35) = 105; Va5, V,=175; V.V, = 2625,

JAB 23

- _5.’{?0” (AB)=1,
TN
Pa = 5 eon SRaT

»

. —% = _2-‘31- — pgb ~c _2-8-— L= —% . % = T/r(ﬂ'fbﬂ) - I"'b.

In this casedooy = ($)($) = £ == p® Hence again p* is the geometric mean of the pro-
portionate cengrfbutiuns of the umpire to the mean scores of the two plavers, and its square 13
in fact the }ro‘portionat& interclass variation of either the A scores or of the B scores,

The identification of p,, as a geometric mean when the common dic is, as heretofore,
one of the binomial type exhibited in Figs. 67, 70 and 73, including the coin as a special casc of
I.?ig. 67, disclcses a clue to a more general interpretation of covariance, when we remove this restric-
tion.  Let us suppose that the face scores of the die are: 0, 1, 2, ete.,, wit frequencies referable
to the definitive binomial (¢ + pY, dencting by #, a and b the number of individual tosses per-
mi'fted to the umpire and to the two players respectively.  Thus the total number of tosses
assigned to the players are (# 4 4) and (¢ + 8), and we may write, as in (i) (p. 300):

Vu=ukpg; V.= (u+ a)kpg; V, = (u -+ b)kpg.

In the foregoing symbolism

¢, =1u+(u+a) and ey =u -+ {u -+ b).
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Our numerical example illustrates the relation :

€. Oy = py = ‘—uz'—-
(u 4 a) (u + 8}
If this is so ; o, = ukpq - ukpy _ _Vf‘d
(u+-a)hpg (w+B)kpg V..V,
Hence also : Cov (AB) V.
VvV, .V, VP,V
Whence we derive : Cov {4AB) =V, . : . . . . (iii)

Here then the covariance of the whole distribution is the variance of th€\umpire score
distribution, being zero when the umpire does not toss (¥, == 0).  In shorf, the covariance of
the paired score distribution is the variance (¥,,) of the concomitant score distribution.

We shall now give the umpire and each of the players a different dibtb toss, assuming that

(@) the umpire tosses twice a tetrahedral die with 1 pip on on&,fz{éé’, 3 pips on another and
2 pips on each of the remaining pair, so that his total scéres of 2, 3, 4, 5, 6 occur with
relative frequencies 1: 4: 6: 4: 1; \/
(8) the player 4 tosses once a tetrahedral die of which ang face carries 1 pip, the other three
faces 2 pips, so that his own scores of 1 and 2 rea;i’aaively occur with relative frequencies
1:3; O
(¢) the player B tosses twice a flat circular die’with 1 pip on one face and 2 on the
other, so that his own scores of 2, 3 and'# respectively occur with relative frequencies
1:2:1. R )
‘I'he variance of the distribution of the umpire’s score is deducible from the weighted
mean of the square deviations, viz. {8
. ('_ 2){‘{:4(“ 1)2 + 6(0)2 + 4(1J2 + (2)2 -1 . . (iv)
<9 16 '

In the usual way, we seblip ;eparately unit correlation tables for each value of the umpire’s

Ve

honus, as below :

& .
Umpire 560%2 g Lmpire scores 3 Lhnpire scores 4
A A A
- 5 6
6 [ 18
B 7 12 36
8 [ 18

Uimpire scores B
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The composite correlation table for the trial is now as below :

A score
3 4 5] 153 7 ] Fotal Alean
[ L
4 1 3 1 — — _ 4 '
S 2 T[N S V! i Ly :
r
6| 1 o8 | s - ke Ll
B 7| — 4 ‘ 20 1 40 12 TR Vi
scare ! ' — : o
8 — | = ‘ 8 . 2 ‘ % | 3 1) N
9| —~ - — | — i 4 ‘ M| s 24 )
— e Y
L T D T B
Total | 4 ‘ 28 | 72 | 88 s 127908 256 i
Mean 5 li 2 ‘ 4 ‘ It ) Ly RS ! 7 —
B
From the foregoing table we obtain o\
TR 6> 1 _
ZAB .- 10560 5\ -E 1t
'

X
LR Y

Moo= 235 MONT7: 33, A9
l65 - 161

o

: CQ“E‘((Z‘IB) o

e
Whence by (iv) in agreement wi;h\g\ﬁi) we have
\ Cov (AB) == 1 =T,

The second mo ents‘dbout zero of the 4 and B score distributions are respectively ehtain-
able by weighting the'siuiares of the scores at the head and at the side of the chesshoard by the
column and row tgtals as fractions of the grand total (236), so that

‘N
p. U8+ 28(4)* 4 72(5)* + 88(6)° + 52(7)* + 12(9):

256 — A
v, — A4 + 245)° + 60(8)° + 80(7)* + 60(R)? + 24(9) 4 4(10)2 3
256 o

In the usual way we obtain

VM, -2 VM - B46
Hence we have )0 (M)

VMa) + Ver % 38 = 23
VM) - Ty =8 4 - 1833
2 .
P =1 G33) - 22,

The identity of p? with the

proportionate inter~class variance here holds good w.r.t. only
one set of scores—the 4 scores.

If we seek a clue to this anomaly, inspection of the correlation
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table discloses an essential difference between it and those of any medels discussed n what has
gone before. In other examples of the Umpire Bonus mode! dealt with so far, the means of the
columns and the means of the rows alike increase by a fixed increment. In other words the
mean B score (M,,} associated with an A score (x,) is a linear function of x, ; and the mean
4 score (M) associated with a B score of %, is a linear function of #,. In this case, only the
means (M,,) of the rows, i.e. the mean 4 scores paired off with particular B scores increase by
equal increments, and the identity of p® with the proportionate interclass variance holds good
only for the ratio of the variance of the distribution of the 4 score means to the variance of the
distribution of the 4 scores themselves. It is easy to remember the meaning of the symbols
M,, and M, (hence by analogy V,,, V) if one repeats aloud :

(i) M,, is the mean B score associated with a particular 4 score. ~

(i) M,, is the mean A score associated with a particular B score. N
o\

If the column border (4) scores and column means (3,,) each increase'by equal steps, it is
customary to say that there is linear regression of the B score on the &.@fﬁie. If the row border
{B) scores and row means (M) each increase by equal steps, it is likewise customary to say that
there is linear regression of the A scove on the B score.  Our lastieXample thus illustrates linear
regression of the A score on the B score and non-linear regression’of the B score on the A score.
We shall now examine a situation in which neither the meags of the columns nor the means of
the rows are linear functions of the corresponding column and row scores. Ior the sake of
variety our model will refer to three card packs copsisting of : (a) equal numbers of clubs and
hearts, being the pack from which the umpire draws one ; (8) equal numbers of clubs, spanflcs
and hearts, being the pack from which player 4\draws one ; (¢) equal numbers of all four suits,
being the pack from which B draws one. Weishall coynt a heart as a success and a card of any
other suit as a failure, assuming that there\s replacement of each card chosen before drawing
another. Thus the umpire may scors\either 0 or 1 with the following results :

y '\‘ A
0 1\ 1 2
i /s ! I| d
0 1IN 2 ] 1 2
B — o B
14 N P 2 3 6
- |

&
*

From the abgvéﬂi!(fé derive the following composite table in which it is _eviclcnt Fhat: (@) Fhe
row mean i$\pdé a linear function of the row score ; (5) the column mean 1s nof 2 linear function

of the column score.

A score
0 1 a Tatal Mean
| | |
0! 1 ‘ 2 | — 300 3%
B 1 3 7 i 2 A
score ) A :
2 . | 3 | 6 = I -
Total 4 ‘ 12 ‘ 8 24 it
Mem | e | aw oy -
i !
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In this case the umpire’s score distribution is defined by the terms of the binomial (3 + Ny
so that its variance (V) is (-25. From the above table we obtain

Y AB

n

. : Lt . LG
i M.oorE M- dn

. Cov (AB)=: 3} - - So=00 1

-

Again the covariance is the variance of the distribution of the common score comypouent.  The
values of V, and V), are respectively given by

09 4 12(1)2 4 S22

Va —-‘)‘L ({.!.)2 .% llri Q.
. 3(0)% - 12(1)% - B(2)® 1 7 R,
Vy = ] R S A O
In the usual way, we obtatn for the variance of the distributions ¢Bihe means of the columns
and rows ."‘.,\\
V(M) = +s and V(A \—352-
From these results we have g o
2 . 7 ‘Q
pas = (1)~ % -1'6‘;",’_18169_'
MMy) + Ve = o384
V(LMM) - I’rb ’__:7‘;3% - 17-.- e _15{

P.xs we anticipated, the p? criterion now(holds good for meither variance rativ defined by
(1) in 9.01. Thus the arithmetical results\of removing all restrictions we imposed on our model
in 9.01 suggest the two following conlelusions :

(i) the covariance of the joint distribution is equivalent to the variance of the distiibution
S . ;
of the common score and in that sensc is an exact measure of the conconutant, as
opposed to the rqs(d&al, variation of the A and B scores |

{11) for the distrib}n%ﬁ of either set of scores the relation defined by (i) in 9.01 holds good

if, and only #f} ‘their means with respect to particular values of the allernate set are
linear funétions of the latter.

4

In Vel II\we shall see that the identity of the ratio (V,. = V) with p? computed by the
product-moment formula is a necessary and sufficient condition of linear regression, i.e. that the
mean ‘values of one set associated with successive cqually spaced values of the other increase by
equa_l Increments. The insight we have now obtained wr.t. the meaning of a correlation table by
varying the proportionate contribution the umpire can make to the mean total score of cither
player clarifies another issue, viz. in what terms it is appropriate to describe a law of concormtant
variation, when each player, as heretofore, adds to his individual score that of the u mpire. At one
!ln‘ut, only the umpire tosses. 'The individual score of either player is necessarily zero ; and there
is then no residual variation arising from the independent contributions of the players themselves.
Accordingly, their joint total scores then tally with those definitive of the diagonal cells of the
‘.cable,. and the means of either columns or rows necessarily increase by equal increments being
1d€t1tlf:al with the successive scores of either player. In that sense, the law of concomitant
variation desctiptive of our Umpire Bonus Model is strictly finear. On the other hand, numerical
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examples which illustrate the effect of allocating different dice to the umpire and to the two
players suffice to show that such a linear law of joint variation does not necessarily signify a
linear relation between the mean of one set of scores associated with a particular value of the
alternate score, when correlation is imperfect. 'What we here call a lincar law of concomitant
variation fs, in fact, consistent with three possibilities :

(a) there is linear regression of both sets of scores w.r.t, the alternate set ;
(&) there is linear regression of only one set of scores w.r.t. the alternate set ;

(c) there is linear regression of neither set of scores w.r.t. the alternate set.

When reciprocal linear regression exists the so-called correlation ratio V,, - V computed
w.r.t. either set of scores is numerically cquivalent to p2.  If only the column niean$ increase by
equal steps, this relation holds good only w.r.t. B scores definitive of the rows;"and it holds good
only w.r.t. A scores definitive of the columns if only the row means inesgase’ by equal steps.
The identity of the product-moment coefficient with the square root of the correlation ratio is
therefore a criterion of Hnear regression ; but we should here be alegt ;o'é verbal pitfall. Whlle
all statisticians agree that regression does not necessarily, or cofafonly, signify a relation of
consequence as defined in 8.01, the Jaws of experimental physits’cast a long shadow over the
mathematical formulation of scientific laws in general ; and\We too lightly yield to the tempta-
tion of identifying linear regression with linearity in the darhain of physical law. In‘ the latter,
a linear or other relation between B and A4 embodies the result we expect if the variation of B
is subject to no agency other than the variation of AN\JTo say that there is non-linear regression
of one set of scores, ¢.g. A scores, with respect talthe alternate, e.g. B scores, in the dom.am of
statistics does 7ot necessarily mean that the Asg0res would prove to be a non-linear function of
the B scores in the absence of agencies which: eonfer on them their freedom to vary mdepe_ndently.

We can, of course, modify the foregoing procedure in order to impose on the universe of
the bonus model a non-linear faw of {@bhcomitant variation. We shall suppose that

(a) the umpire and players jage ‘the same die, a coin with equally likely scores of Oor 1ata
single toss ; Q5
(5) The umpire tosses thitee times, each of the players twice ;
oY ] . )
(¢) 4 adds to his&n?iividual score (x, ,) the score x, of the umpire, and B adds af to his
individual s&ore (%, ).
4 0\' '3

In this instafice the law of concomitant variation is quadratic in Fhe sense that thefﬁ1 sc::re
becomes an exact quadratic function of the A score when we dlr.nlmsh the freedom o cf t;z
sets to vary independently by indefinitely increasing the proportionate number of tosses o
umpire. The unit correlation tables consonant with the foregoing prescription are

A A A A
o 1 2 1 2 3 2 3 4 3 4 5
| 6 s | I— | 1 2 !
0| 1 2 1 1| 3 6 3 4] 3 6 3 9.

B1] 2 4 2 2: 8 12 8 s 6 12 6 | 10 2 4 2
1 R —_— i—_———_—-

2 1 2 1 3| 3 6 3 | 6 3 6 3 11 1 2 ]
| S -
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The composite table is

A score
0 1 2 3 4 K] ol Aean
[ T T I _:
0 1 ‘ 2 . - 4 P
1| 2 | 7 B li 3 - o ,
2 1 ‘ 8 13 || 6 oo L3
s| — | 3 6 |3 II 12 9
- s o . IR R
ol I K L A b L
o o] SR ; 24 3
B |__ o ¢ Lo R R L\ -
- : g e : _ g g
score 6  -- oo 3 | 6 3 | . O
N e N
| — - - £ . —— *
8 | S o | o
! JR— —_— . - - - e —— mm—— _
9 | e | -— I; — | 1 | 2 »'1 I 4 i 4
—_———a—— —I___ - - ._OL:| w__ S — —_—
I A T e B R e A DL
np — ' — | = ‘ R T o4
i | _ " R | L _
R . ~
Total 4 | 20 || 40| ARy | 20 | 4, 18 0 2E
Mean s ‘ 2 | 12 N *3 | 32 | L O
| N\ .
L e _ e
)
_ . ¢k
From this table we obtain N\ ja\
O ZAB _ 1565 __as
PN =qz§ — 4
Y n
.45 2.5y . 8
\w\ Cov (AB) — &2 — 4(2:5) = 3.

. \\ " ¥ - " . . . )
In this case, the govariance of the player’s joint total score distribution is pot the same as
the variance of 131:1\6; 'i:;jnpire score distribution, since

v ro=shd - 1

As stated above, the peculiarity of this set-up is that the mean score of B approaches an exact
quadratic function of 4 as we diminish the freedom of Band 4 to vary independently by increasing
the proportionate number of tosses the umpire performs. It will bring into focus the distinction
it helps ta elucidate if we use the symbols x,, %,.,and x, ., for the scores referable to the

' individual and independent tosses of the umpire and players to set out as below the build-up of
the 2ofel scores of the players when the law of concomitant variation is quadratic and, as in all
examples cited other than the last, when it is linear as we here use the term

Linear Low of
Concomitant
Variation

Quadratic Law of
Cloncomitant
Variation
Kag = Xpag -+ Xy

Xy = Xg ., o,
Xy = Ap.g 1 Ny

Ky = .o b ¥
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All the examples we have discussed so far refer to situations in which the correlation between
the total score of one player and that of the other is positive. ' We shall now vary our procedure
to accommodate negative correlation as follows :

(i) the umpire tosses twice the tetrahedral die of Fig. 70 with 1, 2, 3 pips in the ratio
[:2:1;

(i) pla)‘rer 4 tosses three times the flat circular die of Fig. 67 with 1 and 2 pips respectively
on its two faces, adding to his individual score the score of the umpire ;

(iif) player B tosses once the customary cubical die and deducss from his individual score
that of the umpire,

Thus:the individual score distributions are

Seores 1 2 3 4 5 2.\
(i) Umpire o 1 4 6 4 o
(i) Player A 0 0 1 3 3 N
(itl) Player B . 1 1 1 1 1 W1
The unit correlation tables for total scores of player 4 and playerB,w.r.t. the several possible
. . kW
scores of the umpire are as shown in Table 3. N
TABLE 5 ;’\\"‘
Usnpire scores 2 Umpire scores 3 ’\ @ Umpire scores 4
A A .,“.‘ A
56 7 8 6. 7 85 7 8 91
| R
—1]|1 3 31 -2 4(12’12 4 -3|6 18 18 6
0]1 3 3 1 —d 12 12 4 —2 (6 18 18 ©&
I\
11 3 3 1 (N0 |4 12 12 4 —1|6 18 18 6
B 2 B
211 3 3 1| (S 1/4 12 12 4 0|6 18 18 &
s(1 3 8 N 2|4 12 12 4 1|6 18 18 6
i1 s 3|4 12 12 4 216 18 18 6
|___.Al.—
P, \ : Umpire scores 3 Umpire scores 8
vV P a

8§ 9 1011 g9 10 1112

4|4 12 12 .4 —~5|1 3 31

—3 |4 12 12 4 —4(1 3 31

24 12 12 4 -3|1 3 31
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The complete table for the players’ total scores is as below (Table 6) :

TABLE &

4
5 £ 7 5 9 1o 1! 12 Taral Maean
w3 |I — — -— - 1 4 i 1 = foes
4 | S — - 4 1 15 7 I fi -
-3 ! — 6 Pl 3l 4| 7 | SN AR
—2 i— 4 is 4 i 21 7 1 2y e
—1 |]1 7 2] a5 35 21 7 S ST
7 ‘ 1 7 21 35 15 2 7 O s ks
11 7 21 35 44 18 1 '“,fw‘: 120 _—
2|1 7 21 a1 22 6 S
3|1 7 15 13 4 - :i\\'.: - i 7o
41 3 3 i P\ S o
Totel | & 42 126 210 210 __uu 26 7es s
Mean | 15 093 036 o1 Load s C1ss e es ios

a3
.

Since the umpire’s sampling cji§’t}ibutinn is (3 -+ §)% the variance of the score sum dis-

tribution w.r.t. 2-fold samples is 2.2(1)(2), i.e.
V=1 C (i)

<

To determine ¥, and T{,,{.the variances of the total score sum distribution of the players,
we recall that each is ghe*sum or difference of two independent scores,  Henee the variance
of the total score su'l;lkfétribution of A is the sum of the variance of the umpire’s score sum
distribution and the\vVariance of A’s individual score sum distribution.  Likewise that of 13 is
the sum of the.vatiance of the umpire’s score sum, and the variance of B’s individual score sum
distribution.\We shall here denote the variances of the individual score sum distributions
respectively by V., and Vi.o. The former is that of 2 distribution defined by the binomiat
(2 +$)3; and the latter that of the rectangular distribution (3 +3 .22 . 1+ 1 4y Trom

results cited in 7.05 and 7.03, we therefore have

Vu‘o _—_% and Vb o = (_3__‘__ 1 _'_3:3
2 12
Vﬂ"Vﬂ_l' Vao‘_l‘l‘_?i;%’
V=7, FVho=14 38 =47
V.V, =338

The reader may check these figures by reference to the column scores and totals and to the row
scores and totals of the foregoing table from which we obtain
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ﬂf{a = 85 , Ma = — 0’5 N l?l'faﬂﬂ(b = - 4:‘25,

AB  — 21
X = —— = — 5.25.
n 4
oo Cov (AB)y = — 525 1 425 = — 1.

H f 4
ence from (viii}) above V, = — Cou (4B).

Thus the covariance i8 again numerically equivalent to the variance of the distribution of the
umpire’s bonus, and its sign indicates a reverse-order law of concomitant variation. Evidently,
the law of concomitant variation is linear in the sense defined above, though regression is linear
in only one dimension of the table,

From the above values of Cov (4B), V, and 1, we obtain

— 28 — . ( y
oy = —VEES 0-382. \

In the computation of this example, we have made explicit a balance sheet(of variation con-
sonant with preceding results, With respect to each player we may splitthe Variance of the
total score distribution into two additive components, which it is apprgpﬁ'atc to designate as
concomitant (explained} and unconstrained (unexplained) : a3

Va = Vu + V{a_ﬂ; Ifb — V‘u - Vb‘m ."’.'\\
'Thus we may define a concomitant fraction (E,) of the total variatiet of the A score distribution by

V, Cav(4B) K\\
W GT".___ _ ) & .
g =l @
Likewise, for that of the B scorcs o by

Vs L O 2

E = — = —aNs
4 Vb Pabd Vb’o
Accordingly, the unconstrained fractions {Oh =1 — E,and U, = 1 — E) are definable thus
'it:’ V. Vﬂ )
U, =1 I/_’P; U,,Zl—pab,ji-,— . . . . (xi)
N\ a b
When regression is linear, as w;e\’éiﬁall later see, p,, is thus the geometric mean of the con comitant
fractions, commonly called zégression coefficients, L.e.
\“\ o = Eq. Ey.

The reader will ’:‘e}all that the last example in 9.01 suggests the possibility of a different
causal partition of-Yariation in the domain of the consequential relation between the score of the
player and th £ 3Fthe umpire. Let us therefore examine such a situation without imposing
the restriction that umpire and player toss the same die, viz. the umpire tosses twice the

tetrahedral die of Fig. 70 and the player {A) tosses three times the flat circular die of Fig. 67.
The correlation table is one which the reader should be able to construct as below without

difficulty ; and we obtain therefrom in the usual way
M,=4; M,=85; V,=1; V.=
Cov(AU)=1=V,
P = %
of the product moment index is the true measure o_f the proportionate
contribution of the variance attributable to the source of concomitant variation, L.€. that of the
score distribution of the umpire. In the usual way we also find :
V(M) =1 and V(M) -+ V,=%=ph

L]

In this set-up the square
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Thus the meaning we attach to the numerical value of pand the sense in which we can partition the
variance of a set of scores with reference to a particular source of variation n the nusdel nniverse
of this chapter depends on whether the relation is concurrent ov consequential. An interesting
feature of the latter relationship is that the row vartances (1.} are cqual us adso e the ast
example of 8.01. When this is so, we say that the score distribution is Aomascedasiic 11 the
appropriate dimension of the grid,

A's Tutal Seore

5 [+ 7 3] ] 14 11 12 “T'otal Shean Nonance

2 1 3 3 1 - N i TR ;
I
P |

3|l - £12 2 [ 32 N3 (75

N
Umpire's 4 - G 13 (B 3 48 &N sa nFa
Seare ;‘\
3 - - 4 12 12 I K. "\ 03 -7 A
N

6§ — — — ] K| 3 1 J57Y 5 [ RV RS
I _ e e "\ QA _ —

Total | 1 7 021 43 35 21 7 NV oS 53 175
: RPN S =
Mean : 2 257 314 37l 429 4860 SLEATD 4 [0 |
_ ——— v __ .. . . —

. 4 -
Variance - 0 245 0408 G4 0300 OIS 1 1-0 73

L
<N

Y
N

EXERCISE 9.02

Set out the table and evaluate M, g\fff and g for the following score situations. JIn cach case
A and B each adds the umpire’s scare to his independent score.

1. Umpire tosscs once ;,\Izz-“[}osscs three times ; B tosscs twice with the circular die of Iig. 67.
N\&
2. Umpire tosses P\}\sce ; A tosses five times ; B tosses four times with the die of Fig. 73.

3. Umpir(;,,:co.f%?és’ four times ; A tosses three times ; B tosses twice with the die of Fig. 70.
4. Umpire tosses twice with the tetrahedral die of Fig. 70; A tosscs twice with the circular dic
of Fig. 67; B tosses twice with the tetrahedral dic of Fig, 73.

R Um_pire th_.rows twice an ordinary cubical die, scoring 1 to 8, A has two throws with the
tetrahedral dic of Fig. 70 ; B has two throws with that of Fig. 73,

6. Umpire tosses the circular die of Fig. 67 four times ; 4 draws four cards, with replacement,

from a standard 52-card pack, scoring 1 for black cards and 3 for red cards s B threws four times with
the tetrahedral die of ¥ig, 70,

‘ Y. WUmpire throv&.'s an ordinary cubical die, scoring 1 to 6, once ; A throws the Jdie of Fig. 70
twice ; B throws the die of Fig. 73 three times.
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8.. Umpire draws four cards with replacement from a standard 52-card pack, scoring 2 for clubs,
3 for diamonds, 4 for hearts and 5 for spades ; A4 tosses the circular die of Fig. 67 five times ; B throws
a cubical die twice.

8. Umpire draws five times, with replacement, from an urn containing seven black and three red
balls, scoring one for each black ball drawn ; one black ball is removed from the urn and replaced by a
red one, 4 then draws four times, with replacement ; ten black balls are now added to the urn and B
draws three times, also with replacement, adding to their own scores that of the umpire.

10. Umpire throws the die of Fig. 70 four times; A throws the die of Fig, 73 five times; B
throws six times with two conventional cubical dice, each marked 1 to 8, scoring the difference between
the scores on the two dice.

Q"
9.03 THE ALGEBRAIC PROPERTIES OF THE UMPIRE-BoNDUs MODEL

N\ ©
We shall now examine formally the validity of some results illustrated” numerically in 9.01
and 9.02. Let the umpire have » tosses, player A have a indepehdent tosses, and player B
have b. We denote the raw score of the umpire by x, and thé individual raw scores of the
players respectively by x, ,and #, .. If the total scores of theplayers are respectively x, and x,

By = Xy o 4 Xy and %, =RKplo T+ Yy . . . . ()

27
S

w\
The mean individual score of 4 based on a tosses and\the mean individual score of B based on
b tosses, we denote respectively by My o, Ms o ir’1.~cim’tradist1nct10n to M,, M, the means of the

players’ total scores. More fully we may writvei;‘. o
Mo = Mlze.S Mo = M(ze,o + %)
Mo = M(&o); My =Mz .o+ %)
The relations of M, to M, , and ]{\‘to\M“ are as defined by the chessboard for the distribution
of a score sum in Fig. 46 of 4.Q4

M, =Ml 1 %) = M)+ M) =Moo+ Ma - (D

My S My o + 5) = Mo o) + Mix) =Moot Ma - i)
By V., we denote thg%r\lanoe of the distribution of a,. Similarly
AN V=T Va= Vit w)
O~ Voo Vitn.o); Vo= V(x.o+ %)

In virtue of the independence of the umpire’s score and the individual score of either player:

V, = V(ne.o + %) = Vi{xg.o) + Vixe) = Vaot Vs - . . (V)

Ve = V(tts.o + %) = Viwo o) + Viz) = Vo + Vi -+ . .

It will hete be convenient to write the customary formula for the mean s;liuzttﬁe;n dg‘if)at;(f";_ (;(;3

the variance (V) of the distribution. of a score x in a form more economi

V= M(x — M) = M(x?) — M.
In this notation
V.= M) — My
25

Vo= M) —Mboi Vyo= Mz — Myo . ()
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In the same notation we may write
Cov (AB) : Mix, . x,) M, M,
Cov (xy. 4 x%,) - Miv, .. v M., Y
Cov (xy.5,8,) My, ,.x0  M,. M., ..
Cov (%40, %5,,) M2, . Xa) M,
In 8.06, we have seen that it is a fundamenta! property of the chesshoard B cguiparti-
tion of opportunity, i.c. statistical independence, that the covariance of the Jeint honler seore
distribution is zero. Since the players’ individual scores are mndependent af one

another and
of that of the umpire, we may thercfore write

CO‘U (xu. ty xb. o) T CO‘U ('Til - a3 '\bu) ( .U"” (-llh Sty -\.n) 0 - . \ - - (V“)
repardt concliaion that
ariunce of the pi&!?f.f\\ Juint totaf score

g W

By recourse to these symbols we may now proceed to estublish the

the variance of the umpire's score distribution is the cut
distribution :

Ko %y == (X5 5 4 2,)(%p 0 =+ x, SRR N S .\‘ﬁ.f ‘1, CXy
o MlEa . m) = M)+ Mlxayw) o Mlvg . x0) - M o),
Mo My = (M, o+ MM, 5+ M) = M2 ALY 3, 0, VL
Cov (AB) == M(x, . x,) — M, M, 7\
= M) = My + M(x, o . x) — M, &5 Mv, o) 3
t Mo w0 — MM,
= Vi Cov (x4, %,) + Cov (W) -+ Cor (.0 %),
Whence by (vii) above N )
C(:lz, (AB) = ¥, . . . ) . o {viin}
This theorem is of unrestricted applieability to the model,
assumption w.r.t. the number of tog3es” the players make or
they do use one and the same di¢jywe may denote the varia
V1. That of the score sum af @ 7-fold sample will be as i

its truth being ndependent of any
whether they use the same die.  If
nce of a unit sample (single toss) by
1 (1) {p. 289) 7V, so that :
K,{%"HVI s Ve=(utaVy; Ve (u = o,
A\ utVy u® .
‘§ pL, = " ‘.._._.. L= —e i . . (1x)
D\ (u + a)(u + Hy? (u - a) (x4 b)
. N\ . .. . , .

That is to say, the.correlation cocfficient is then the ratio of the number of tosses of the umpire
to the geometfig'mean of the total number of tosses which the players respectively score, or the
proportionate contribution of the mean score of the umpire to the g-m. of the players’ total
mean scores.  If the players perform the same number of individual tosscs, as in 9.01, so that
a=band (u+ae)=n—= (# + b), the preceding formula becomes

it
Fap = ‘?; . . . . . . . (‘()

If we put , , = 01in (i),_ that of B becomes identical with the umpire’s score 50 that ¥, - ¥,
E;lld P}clrb = Puy, the coefficient of correlation between A’s total score and that of the umpire. We
thus have

eV ¥y .
Preu = ‘,\7—1/::_[; = ?— . , . . . (Xl)
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By the same token

Ve
pou = o 7 . ) ) } ) . . (xii)
B
IFrom the above it follows that
V.
Pou + Pou T Pab - . . C ( xiii)

Let us now cxamine the implications of linear regression of one player’s score w.r.t, that of
the other player. To employ the symbols of preceding sections consistently, we shall assume
that we lay out the scores of player 4 on the top margin of the table horizontally and those of
player B wertically on the left of it. We then say that there is linear regression of the score
B w.r.t. the score A4 if the mean values of B scores (i.e. the column mea@s)corresponding
© to successive values of the score A increase by equal steps. With appropriate. constants k,, and
Caq respectively definitive of the scale and origin of the graphical reprege{it}mxon of this relation,

we may therefore write )
i My, = kpa 2, + Cha (X-W)

Y
Similarly linear regression of 4 on B implies that the row rgﬂ\aiis increase by equal steps, so
that A N
Ta obtain k,s or ks, in terms of py, or of expressions 1"31’;1%({1 t0 pus, it is convenient to define the
constants specifying the origin in terms of the mean ralues of the two scores, i.e.

Coo = (My — hye . M) :a,péf:’ Cos = (M, — koy . M,).

We may now write (xiv) in the form commgrﬂyz referred to as the equation of linear regression

of Bon A: Mbu";jjvfb = ko, — M) - . . . . (xvi)
o (Mg My)* = k2.(x, — M2
X

%— M,)?is V,, and that of the expression on the left is V(M,,)
o

By definition the mean value of ‘
umn means. We may therefore write

because M, is the mean of theco

2 VM) = BAVe . e . (i)
To evaluate &, In Q“'z'ﬁiernative form, we can multiply both sides of (xvi) by ,, so that
O My, — 5, My = Ry x®— hyadia . Mu o oo (xviii)

&«
e

Again we take “he mean value of the expressions on either side of the equation.  For the expres-
&
sion on th&gight we then have

By - M(x2) — boo . My o M%) = Fpes M(x3) — Rpa Ml=k,.V, (xix)

Also we may write the expression on the left as
M(xa . Mba) -_ _Mb . ﬂi’(xa) = Ilff(xa . ‘I"'fbu) — ﬂjfa . )’Wb.
78. the reader will see that we may obtair: the mean value of the products AB

1 i el heir appropriate cell
i ino the cell products of the correlation table weighted by t ;
E;zl&irezée?tzf’nbf summingp the products of the column means and corresponding border {4)

scores weighted by the frequenices of the latter, That is to say
' Mz, - Mo} = M(x, . %),
o M(xa . ‘Mba) i Ma R flfb = CO‘E-' (AB).

By scrutiny of Fig.
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By substituting the last expression together with (xix) in {xviil) wo thus obtain
Cov (ABY = k0. V',
ok sV =V pl, . . : . - (xx)
It we now substitute this value of %, in (xvii), we obtain
ViM,)=V:=+ TV,
co VM) = V= 3782 1, 01,8, : : o (xxi)
This signifies that lincar regression of B on A4 implics the identity
V(M) -V, - p5,.
Similarly we may show that lincar regression of 4 on A implies the identity,
VM) + a2y 2

Ny

The corresponding linear equation which denotes this relationship gsy

Q!

My — Mo+ k(e — M) €00 (i)

It is customary to call k,, the regressiou coefficient of B ondland £, the Fegression cocfficient of
A on B. The same reasoning which led us to (xx) showsthit

.
k-.:b == V!s - I'/b‘:. ; psu!

N e (xxiii)
It is possible to express k,, and #,, in a formaghich docs not involve explicit information about

the umpire’s score distribution : N

RNy %
kﬁ — ® ¥ __L__ . _‘_b - o . _b
ba EE:’ Va . Vb Va Put Vﬂ}
N G -
K= pas . ‘{';b . . . . . : . . (xxiv)
O; o
Similarly we may write X :.\
& o,
\\~\ hav=pay . o . . . . . . . {xxv)

bl We are 1OW Inng"position to appreciate more clearly in what circumstances we can make a
alance sheet Gf} variation resolving the variance of a score distribution into additive com-
ponents appropeiately described as explained or otherwise. With respect to each player of the

umpire-honus set-up, we may split the variance of the total score distribution into additive
componeuts, as follows

Va = Vu -+ VG.O and Vb = Vu + Vb,o . . . . (}(X‘-’i)

In either case, the same component is the variance of the distribution of the concomitant umpire’s
co a P

score, the %eSIdual component bei_ng the variance of the player’s independent score distribution.
zfmy meaningful sense of the f:-plthets ¢xplained and unexplained w.r.t. a common source of
variation, therefore justifies us in applying them respectively to ¥, and Vaeosor Vi, ; and we

may aCCOfdl_ng_I}f express the proportionate contributions of two components so described by
writing (xxvi} in the form

Vu Va.o Vu Vba '
BT SIS L (i)
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As in (ix) and (x) of 9.02, we denot i ;

i it o (0 ; enote by E, and E, respectively the explained components, and
Ea=V, - V= pa‘fu’
Eb — Vu - Vb - P:U‘

. Except W}}en Paz (= Puy - Pou) is zero or unity, neither E, nor E, is therefore identical with
Pas» TOT 1d§3nt1ca1 with th(? correlation ratios (¥, - V) equivalent to pj, when regression is
linear. It is therefore pertinent to re-examine the relation exhibited at tl:e end of 9.01, where
we first saw that the chessboard set-up for the umpire-bonus model admits a break-down of
variance into components defined by the relation

VM) | M) _ V0L | MVe) |

v, v, s 7, {(xxviii)

N

We shall later see (10.04) that this identity has nothing to do with correlation-as such. It is,
in fact, a numerical property of any chessboard set-up, depending on no distinctively statistical
postt‘llates, though the foregoing analysis has shown that the first :céihponent of the above
relations has a special statistical significance when regression is lindafy If regression is linear in
both dimensions VvV

V(Mub) . 1 V(Mbc ) .
Va Pos V\f\~ . . - . . (lex)

The last equation refers to a correlation table setting @ut the association of the total scores of the
two players, and the coefficient pg, is then a summdtising index of their concurrent correspondence
in the sense defined in 8.01 ; but we may also. gompute the corresponding ratio from the data of
a correlation table setting out either the conséguent variation of the total score of player 4 on that
of the umpire, or the consequent variatiof of the total score of player B on that of the umpire.

In that case, the reader should be ahle,to show that regression of the player’s score on that of
the umpire is necessarily linear, and\ -

V(Mo d\J V(M.
—(W)ZP;:EG and (V:)=P:u=Ea L )

1)
Tt would therefore seept that the use of the terms explained and unexplained for the components
of the relation exhibifed in (xxviii} is justifiable only in special circumstances. It is a true bill
for the consequent.felation of the total score of the players to that of the umpire, but it is not a

true bill for ;hsj:o}wurrem relation of the total scores of the two players. Thus the ratio ¥V = V

has no uniquetitie to rank as the fraction of explained variance, and the ratio M, = ¥ has no
xplained in

unique claim to identification with what fraction of total variance is residual or une
this sense. What we are entitled to say is that
-+ ¥ is unity when there is perfect concomitant

(@) the limiting value of the ratic Vn
and is zero when there is no common source of

variation, in which case p = 1= '
variation, in. which case p = 0 = p?;
(b) the limiting value of the ratio M, — V is unity when there is no common sovrce of
variation, in which case (} —p) = 1 =(1— p?, and is zero when there is perfect
concomnitant variation, in which case (1—py=0=(1— p%).
fy the use of the terms explained and unexplained respectively

Between these limits, we can justi : espective
class variances, only if we have other reasons for identifying

for the inter-class and mean intra-
them as such.
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904 ParriaL CORRELATION

In the use and design of performance tests we often mect the following tvpe of situation,
Paired scores of one and the same individual w.r.t. two test batteries A and #3 constrrected with

a view to assessing a particular ability (/) yield a high product moment index p . but one has
reason to suspect that this concurrence arises partly from another source (H7) e whieh we have
a standard test deemed satisfactory as such. If so, we may determine correlation coacfiicients
{Paw OF pyy) based on paired scores of individuals assessed respectively by the bam? the 1 test

or the B and the W test. Having done so, we may ask what numerical value U resii] corre-
lation coefficient (p,,.,.) w.r.t. tests 4 and B would have in the absence of the extroneous com-

ponent assessed by the W test itself.  If we can answer this question we can medily thie original
design of 4 and B to assyre a higher measure of concurrence :1ttributahll,: taM ol and so
define more precisely which of their ingredients are most diagnostic ofy (s ability ~ ¢ aim to
assess thereby, D

Formally the problem is to define Pas-ws Which is a more satisfuctmir):mc;:surc than 4 of the
concurrence arising from U, in terms of observed values of Patr Puits pb Within the framework
of our present model, we may regard A and B as player's totalscores cach with a cotnponent
attributable to individual variation and cach with componengd réferable to a honus fron cach of
twoumpires Uand W. We shall assume that we know thepalue of 1 (¢) the correlation coctlivients
(Paws pou) for the score of the player and that of one urﬁp‘irc W (b) that of the total .1 and B
scores (p,,) inter se. Qur problem is to extract fromPehis information what the praduct moment
coeflicient (p,, ,,) of the 4A-B scores would be, if umpire W withheld his bonus or—ywhatl comes
to the same thing—donated one and the same, fixed bonus at each trial. Any relationship we
seek will conform to the condition that p,, e\Tust be zero if all corrclation between o and B
scotes arises exclusively from the bonus.of W, there being only one umprre bonus. It =0, by
virtue of (xiii) in 9.02 K

\'\‘P‘u’b — Pow - Py = 1

Since p,y.,, = 0 when the contrifution of the UJ bonus to the recorded total of 4 and B scores 1s
zero, we therefore infer that Fh@s numerator of a relation of the type we seck may have as a factor
some power of (p,, — p,., Opye). Tentatively, we may explore the simplest assumption, that it
nvolves a first power. \Ifﬁive then write D for an undetermined denominator ;

N\

2 S

L0 Y p _ Far — Paiw Brw
@brw — T T ————
RS D

Now p,; ... mustbe equivalent to Paz: If umpire W contributes nothing to the total score of A or
B. Ifso, p,, =0 = Powand D=1, A condition which satisfies this relation is that [ is a

function of a product of the form (1 — 2} (1 — Pro)  With these clues to the relation we
seek, we may now get down to cases.  We shall suppose that :

(i) 4 and B each toss a coin twice ;
{11} Umpire W tosses a coin once and umpire U three times :

(i) 4 and B record as their total scores the results of their respective tosses supplemented
by both the U and W score at the same trial.

‘Since the umpires toss independently, we may regard the distribution of their joint toss as
equivalent to that of a third umpire Z w.

ho tosses (1 4+ 3) = 4 times, so that we may write
Vi=4H1) =1 = Cov (4B). Likewise, ¥, ~ tand V., =% When both umpires toss, A
and B each record the outcome of six independent tosses, so that
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Va=6(%)(%)=%: Vs

and
V. 1
Pab:_‘\/m:\/@:% . . N £
Likewise, we derive the correlation coefficient for the player’s total and that of umpire W
p§w=%=%=piy . . . . . (i)
e Py = Pan P = E— =% . . . . . (i)

When the umpir(? W withh‘olds his honus, 4 and B record the result of only five independent
tosses. If we write the variances of the final score distribution respectively as Va.;\and Viw

we have A
O\

Viw= % = Vi )

If we denote by Cov (4AB),, the covariance of the final scores when uri’lpi’rc W withholds his
bonus, and p,s.., as the corresponding product-moment index, we hag

L”
Cov (AB)y =3 = Voo 2O

V., )
Pab'u?:j =3. ;;ﬁ.\é% (i
\/Va'w . Vl‘rw N ’\4 ’ ) ’ ’ \")

Let us now examine our previous proposal, viz.
Papw = ——';*&D——‘
From (iii} and (iv) we then get

From (ii) we have & 7

_‘Pawsgzl_Pgw'

2D = VI = ) (L — P

Qur numerical invesﬁgatioQ;\tﬁhs suggests as a basis for further enquiry the relation

.’s‘\ P _ Pab — Paw Pouw
™3 ahaw T ——— 5 "
N \/(1 - Pﬁw) (1 - Pgw)

This relation is easy to establish as a general property of our model without restriction w.r.t.
the identity of the dice involved or the nummbers of individual tosses allocated to the players.
It is, in fact, valid for the more general case of linear concomitant variation, when the players
receive different multiples (! and m) of each umpire bonus in conformity with the equations

X, = ¥g0 Lo - ¥u Ly X
Xy = Xpo + My - X + M X
If we here derive it for the simpler case which arises when 4, I, m, and m, are each equal to

unity, the student should be able to adapt the reasoning with a view to removal of this restriction.

For what follows, we are thus concerned with a system of jeint scores
%, = Xy.o T Xy + X
Xy = Xppo -+ %u + xu
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It will be useful to set out the relevant symbols as below :
(@) pay.w w.r.t. the players’ total scores in the absence of a bonus frons an unipire 197,

(2} pa» « w.r.t. the players’ total scores in the absence of a bonus from an wmnpire 17,
In conformity with this symbolism

Viw is the variance of the distribution of the joint individual score of the wpire U
and player A ;
Vi is the variance of the distribution of the joint individual score of the mnpire W

and player 4 ;
Cov (4U), is the covariance of the score of umpire U and the joint score of {7 and .1 ;
Cov (AW), is the covariance of the score of umpire W and the joint score of 1F and -1
Cov (AB), is the covariance of the total scores of 4 and B in the abscnce ot&he cantribution

of umpire W ; O\
Cov (AB), s the covariance of the total scores of 4 and B in the absufige of the contribution
of umpire U AR

: Symbols for corresponding parameters of the B score distribafdbii in the absence of a con-
tribution from one or other umpire are analogous to the aho¥€)" Without the additiosal sub-
script Cov (AB), pay, Vg, Vi refer to total score distributioniigwulving the double bonns, The
symbols V; , and V5, , refer, as elsewhere, to the individudPstore distributions when the players
receive neither bonus. o\ ‘
_ 'The following relations must exist between the Wariances in virtue of the fact that the
mdw'idu‘al player’s own score is independent of that of either umpire and the score of one
umpire is independent of that of the other : %%

*

Vﬂ = I’yﬂ.o + Vu _j‘ ’Vu:; Va.w 5o Va,o + Vm

.. Vri _»I)S; = Va,o + Vu == Va_w - - : - (V)
Similarly, \'\‘
V" - V“‘ = Vﬂu‘:h; Vb - V“ = Vb-“ ’ Lrb — Vw - I/b‘w . . (Vi)

If the distributions of thechirpire scores x, and x,, are referable to a binomial, the theorem of

7.05 shows that the distrib&ﬁo"n of the total score xy, = (%, + &,) is likewise a binomial with

variance Viw Z,V'f +- K;{;’and we can regard the distribution of x,, as the source of total
concomittant variationyy,e.

M:.\"u' Cov (AB) =V, = V, -+ V,,
'Ijhe al?ove rel_a}tioh. does not, however, presume that the dice tossed by the umpires arc of the
binomial sPe01ﬁcat1?n exhibited in Figs. 67, 70 and 73. It is deducible in the same way as the
corresponding relation, when there is only one umpire, by the method used to derive (viii) in
9.03. The reader should be able to take this hurdle as an exercise. We then have |

_ T+ V)

VA (vii)

ab

Similarly we may put
Vs
VViiVoow
e _ %

Pow = ~—————== [ ¥ . i
VVe. Vy Vv, ) ‘ - )

Pad w == C e (i)
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Prw = E
Vs
o+ e = —®
i § bw _—
: VV,. ¥V
Hence from (vii) above '
Pt V) T .

Pab — Pow - Pow — _
VVe Vo ¥ '
Also from (ix) and (x) b Ve.Vs VVa Vs
VoV, V,—V
1 —pl, =2 g _ Y= Ve
Pa Va ? 1 Pow — Vo .

Hence from (v) and (vi)

VViw. Voo ¢
- V-l == O
By combining (xii} and (xiil) we get C
Pab — PawPbuw — Vu ':
2 2 N
Whence by (viii) 2bove V= )= rt) \/?@Vﬁ'w
pab0 = - Par — Po.@ :b'!:\. )
| (1 — falt — £
In the same way, we obtain R\
“_. P‘;lr; Paufou
Pt ™ T — pZ)(1 — p2u)
K
“\"EXERCISE 9.04

By the methods of this sectiq@’i&fx’restigate a set-up in whic
(i) The umpire tossé's;ti{e circular die of Fig. 67 three times.

(i) A tosses thq\{‘"l};\,ﬁi’ Fig. 73 twice and add

(iii) B tosses tlie die of Fig. 73 three times,
that of, 4: N

(iv) C@;wme die of Fig. 70 once and adds to his score B’s final score.

s 1o his individual score that of the umpire.
adds to his score that of the umpire, and deducts

393
(x)

(xii)

(xiii)

h the following are the rules of the game:



CHAPTER 10
PREVIEW OF SAMPLING SYSTIENS

1001 THE Lexis MobpeL

In Chapters 4 and 7 our theme was the distribution of differences andd sams of =00+ from one
and the same universe on the assumption that choice is independent. In the last Capter our
concern was with two-way systems of scoring subject to some constraint or source of concomitant
variation, so that there is not equipartition of opportunity for assoctuation bt n one set
(4) of scores and the other (B). TFor any such sct-up, we have had oedSon o notice a
common property by recourse to arithmetical examples.  "T'he meanin-e of this wie liadl now
recall to explore more fully. If V', stands for the total variance of the ;i.[s?f‘i!nninn of T scores,
V(M) for the variance of the distribution of the mean value of thew¥eore assaciated witha
particular value of the B score, and M(V,,) for the mean value of&hd variance of the .1 score
distribution corresponding to a particular value of the B score LY

Va =2 V(M) -+ M(17,,).
Mutatis mutandis the same relation holds good for tllc,\ﬁjf}éorc distribution, i.c.
Vo = V(Mya) -+ MV,

When the context makes clear which sets of scores ate Sur coneern, we may write more snecinetly

Vo= P+ M, . . . . . . (1)
If the mean A scores constitute an arithmetic serics, when we lay out the 73 honder scores
consecutively in equal steps, as in all thé examples of Chapter 9, our arithmetical iiliustrations

have suggested a second relation a full_¢onsideration of which we shall defer to Part I, @iz :
O = V(‘Mrub} - Va'

Subject to a like restriction, s/ linear regression of the B scores on the A scores

R (TR
and if regression is li’qeks“in both dimensions of the grid, we may write this relation in the more
general form =N ..
AN FP=VasV . R ¢ 1Y

. . ”\\ "

I is impdgsant to notice that the numerical value of the B border scores of an /-3 corre-
lation grid do not enter into the computation of either F(},,) or M(V4,). For that purpose
th:c‘: B border scores are merely labels to distinguish one ¢
might I'GP!&CE them by any distinctive symbols. Similarly the 4 border scores of the grid do
not enter into the computation of V(M,,) or M(Vy,), in that context, the 4 scores being merely
f:laswﬁcatr:)ry caftegories with no numerical significance. "T'his circumstance gives (i) a special
Interest vis-d-vrs an alternative formulation of the class of problems dealt with in our last chapter.
If there were no tie-up of any sort between our 4-scores and our B-scores in the model situations
of Cbapte_r 9, thfa grid lay-out would be the same as if we extracted unit samples from each of
two 1dent1c§11 umverses. If so, the score distribution of each column would he the same, and
the score distribution of each row would be the same. These considerations invitc an cx-
p!oratlor} of the properties of a mode] for sampling from separate universes with a view to
discovering whether they are of different composition. ‘The universes of IFig. 80 are four urns

olumn from another and as such we
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A B C D
i + % %+ B B & & 3 B & 4 E 8 & &
R K RN AR A% A D a5 50 R AR 45 85 B 28 3
A B c D TOTAL
O e88| 2000 9L2% 64000 10592 292717
| eee| swooo ouas 96000 | 62544 ISI0E9
2 ®9®| epooo | 30375 | 48000 | 20736 Bo.en A\
3 eee| mooo 3375 8000 1728 40,903 N
TOTAL 216000 | 216000 | 216000 | 216000 | 844,000 ’\~>
MEAN ¥ A 1 ¥s Tho__4 )
VARIANCE EA N 2 Rhe %

Fic.80. A Lexis Model, Each column exhibits the theoretical sampling distri fution w.r.t. repeated 3-fold trials

from one and the same urn. The player replaces each ball before drawing dnather.  For convenience of com-

-putation the ceil entries definitive of the frequency of the corresponding \border score in samples from the
appropriate urn are whole numbers referable to a commqr{\cl;nominator, wi. 216,000,

from each of which we take repeatedly the same nunﬁ)@r.(\S) of balls, replacing each ball taken
before taking another. With respect to each urn,\the number of 3-fold trials is identical and
indefinitely large. From the entries in Fig. 80, révording the long-run result of such sampling,
we obtain the following figures for the grand,niean (M) and the total variance (¥ == Vo — M?):

292,717(0) + 351,089¢1) + 180,111(2) 4 40,103(3) _77
M= 7 864,000 = 5
5929 _ 800418
6400 864090°
299, 71705 351,069(1) 4 180,11K(4) - 40,103(9) _ 1,432,440
- 30 864,000 864,000

O\
Hsza0 soo4ls 632025 G

" ¥ 864,000 864,000 864,000

"\
For the :'nterv{ ssvariance (V) we have
@)+ @)+ 104 () 5929 _ 747 10088

Vo = 4 8100 6400  8B4,000°

]

For the intra-class variance (M,) we have
348 +44 35 2951 531,180
M= 4 4800 864,000

Whence we obtain @ 00845 SISO 632,025

Vin + Mo = 551500 864,000 864,000

above:

Hence from (iii) in agreement with (i}
V="Va+ M.
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If we seek to generalise the results exhibited in Fig. 80, we should remind oursclves 1 (g)
that it refers to the extraction of equal numbers of 3-fold samples from cach urn ; (6} that the cell
entries of one and the same column of the Lexis model record along-run resalt. L fact, they are
merely frequencies as we have used the term elsewhere in this book, when divided by the common
denominator 216,000 shown as each column total.  In other words, cach cell entry divided by the
column total is a term of the binomial expansion definitive of the column score distribution.
The sum of all such quotients in one and the same column s therefore unity, and the grand
total for a grid of ¢ columns is ¢, If the proportion of balls in the urn of the fth colin is i
the mean of the score distribution whose relative frequencies successive cell entrics of the jth
column define is 7p; and the corresponding variance is rp,g;. I 3 is the grand mear, heing the
mean value of rp;, we may therefore write

ige RALA ~
M, =— z G5 Ve = z ript — I3
C.f='1 I'f"j-- 1 N
1i=c K N,
s My Ve 21 oy ¢+ ) -3 . (W)
j= “~

By a now familiar property of the binomial distribution the nur;u{&i]u;mr score of the jili column
Is (rpg; + r*pj). Hence the mean square score (V) of the'dhfite grid is

lju I3 ] m’\\:
VS g, + s
Since ¥V = ¥, — M? =
j=z »." N
V= " z (rpqu—q‘—“ rzpf) — A= ) . ) ) {v)
feml . NN

~ 4

[
W =V, + M,

Hence from (iv) above, we obtain (i), i

¥

-

Y

#&
\

] It is tempting to regard theyrelation last stated as a sort of balance shect exhibiting the
mndebtedness ot: the total vatiénce of the system to the circumstance that the urns are different.
In one sense this is permigsible, in 50 far as the inter-class variance (V) becomes zero when all
the urns.of Fig. 80 are identical. In any other sense, itis false to identify the ratio 7, - 77 with
the fraction of total y&iénce attributable to the differential composition of the urns themselves,
To say so would signify that the inter-class variance represents how miuch of the totel variance
would dzsappeg{:zf, in fact, the urns were all alike ; and any such assertion is meaningful only 1f
we define how, e propose to eliminate differences w.r.t, urn"composition. An example will make
this clear. Let us consider a 12-fold replacement trial from cach of three urns constituted thus

| -
Numbers of ‘
Um | ] i Total, Proportion of
: ; Red Balls.
Red Balls, Black Balls. ‘ )
A 3 ¢} 12 ‘ 1
B 6 6 12 : 3 :
19 4 8 12 | -;5 |
Total 13 : 23 36 | 13,
I H 30
I
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The definitive distributions are then (0-75 + 0-25)2, (0-5 4 0-5)12, (0-6 + 0-8)'2 wi
(red-score} means and variances as follows ' { % (06 4 09)" with columa

A B c
Mean 3 6 4
Variance 3 3 g
We derive in the usual way
V=" M,=3%; V=28t =434 . ' . (vi)

:Tnter alia we may eliminate all variation attributable to the circumstance that the urns are different
in three ways @ (i) we replace B and C by 4; (i) we replace 4 and C by B (iii) we replace
Aand Bby C. If we establish uniformity of column structure in accordance with (i) the total
variance is 12(3)(3) = £3%, the reduction effected being ¢, If we do so in atdordance with (i)
the total variance is 12(1)(3) = 1%8, the reduction being 5. If we do sqin-accordance with
(iii) the total variance is 12(3)(2) = §¢, the reduction effected being then§ &/

Any of the foregoing procedures is arbitrary ; but there is one whiclris less so. 'We might,
in fact, mix the contents of all three urns and sample from the cofpdsite urn, or what comes
to the same thing—extract three samples from each of three wids, each containing the same
proportion of red balls as the composite urn. The resultdg piixing the contents of the urns
will in general depend on whether the urns 4, B and C coutain, as above, the same number of
balls. Tt is therefore important to recognise a restri {on inherent in the numerical example
under discussion, namely that the total number of hal}&n each urn is the same. To construct
the standard urn we thus impose the condition of‘eguiproportionate contribution of each original

wrn. Having done so, we have reconstructed aite frequency grid with identical columns whose
definitive binomial is o
.(jIB + 23)12
36 :
\

idard grid is, of course, the same as its intra-class varfance,

The total variance (¥} of this &%@ the same :
since the variance of the distdibutions of the columns are identical, i.e.
2OT v = apah - 1
N
This is not in fact equivalént to whit the total
by a figurc equivaleht to the duter-class variance,
above, ie. 0N

variance of the original grid would be, if diminished
the residual variation being then as defined

— 28
=1

-}
coftn

ce of the model exhibited in Fig. 80 is not the amount
variance in order to obtain the variance of a standard
g the same proportion of red balls as an urn made up

Tt is thus clear that the inter-class varian
by which we have to diminish the toltzfl
grid referable to identical urns containing tI
of equal contributions from each of the ongm?l ones.

Within the framework of our last convention. it 1s,
balance sheet of variance, and a clue to its components emerges
In the light of the results cited as (vi) above, let us exam_lne: how muc
of the grid equalisation of the sort last dealt with entails :

however, possible to exhibit a meaningful
from the last example cited.
h effect on the total variance

453 299 154 _(nad4) _(12—-1

V—Vi=js 108~ 108 (1209 12
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This suggests a new balance sheet of variance for r-fold trials :

w1
V = prs ':I ’ r__r - Vm . . - . . (Vll)

We may proceed to establish the truth of (vii) as follows in accordance with onr definiien of the
standard grid, viz. :
(@) we take an equal mumber N of balls from each of ¢ urns, the proportions | Do o etel)
of red balls in each N-fold set being as in the original urns A, 8, cte. ;
(6) we make up a standard urn by mixing the scts, and replace the urns o, 50 cwel by
others each containing red and black balls in the same proportion as the standard urn
and therefore each identical with every other onc.

For the proportion of red and black balls in the standard urn we shall Pesprectively use p
and g, the symbols ¥, and ¥ for the Lexis model having the same meaning 3 heron e ;. and
we extract repeated r-fold samples of equal size from each standardizelMn.  Since Une urns
are now identical, the inter-class variance I, 18 zero and in \'irtuc,n'{.\(i) the mical intra-class
variance of the standard grid is the same as its total variance : * &\

Ve Thy. ,"’.’\g
If the number of red balls in the original urn of colugdy is ay, the proportivn of red in a

total of z ballsis (x; = n) = p,. Our assumption 1s that/the number (1) of balls in cach of the ¢
original urns is the same, and on mixing their contept€sve obtain the standand e i which the
total number of balls is ¢, and the number of red Dalis

j:.c .\""-‘

5 a S

i= 1’:: i=1
If we use p and ¢ to signify respectively“the proportion of red and black bulls in the standard
urn, we thus obtain PANY

3

P.,_.f:fz_lpj’ v 'E}Z] b E}zi (L p (viii)
A% & ¢
X 7 ..::EEZP’Z(I P})
\::\s. 1 1
s\ ¥ < <
& IS
SN A 1
0»\3". iy .. .
\ l;zzpf_;zlpjgpj
1< 1/1& 1.2
:Fz by __(Ezl’"f’f “zl:rpj)
¥

* This consic!eration sidesteps a limitation in {6} of vur
Fhe € umns, vz, we can do so only if the total number
mteger.  If each of the ¢ urns of the Lexis model hag
we pool all their contents to make our

Prescription for imposing the condition of hnmo_s.:cncit__\' on
of red balls is consistent with the relation &y © Npy is an
the same number (&} of balls, our prescription implies thal
tribution of an -fold sample from such Sendud urr? 0 ntaining eN balls. ’l‘he_tntal vari;nr_we (? "-) of the scure div-
oo pon of an r-fold o ¢ from 2 standard um 15 the same as the total variance of an indefinitely Jarge numbet

t ] 1als Irom ¢ identical urns each containing N balls, when it is in fact possible to partition the standard
urnt 10 this way, i.e. if Z%; is an exact multiple aof ¢, ,
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We have seen from (v) above that

[

1
V= ;Zl (rp,q, + 1%07) — M2

1 1&
= 2l —p) =Dy — M
1

1

1 (3 1 [ 1 [
— b, — — 202 - ap® 1
CZP’ icgrp?ﬂ;rpf M
M s rip? (x)
1
Since the square of the jth column mean is 727, we may write QY
1& )
Vi + M2 ==3 1%} QO
=15y O
Thus (x) becomes N )
V=M-—M+— Lv + my 9
1 — \
_u—toap Ty
T r \
Hence from (ix) above \V
r—1 >."“ ) H
V=Vt —Va¥' . - (xi)

This is a truc bill in the sense that the seconid component on the right-hand side exactly repre-
sents the difference between : (a) the tofal variance of the grid when the urns are not all atike,
(B) the total variance the grid woul Gve if we eliminated all variance attributable to differences
between the urns by replacing eagh urn by an urn of composition identical with that of a standard
urn having an equal contributiomef balls from each column urn of the original grid, the ratio of
red to black in each contrib@tioh being the same as in the contributory urn, We may express
this alternatively by rega{éi}n"g the standard urn as a parent universe, and the set of different
urns as a stratified un'ﬁ@rsb therefrom by redistributing its contents in such a way that the total
of jtems in each stratm from which we sample is equal ; but we are entitled to look en it in
this way only ifthe condition last stated holds good.

We ma}-‘\yi?r’it?a (xi) alternatively in a form recalling a result established in Chapter 7 (p. 304)

¥ ¥ .
Vm:?‘—"lV_-?'—-'IVa . - * . . (x")

It is, however, important to notice that neither ¥ ror ¥ in this context is an estimate (s%) of the

form (vi) in 7.£6 in which ¢? is the sample variance
r
r—1

2= 0%

xt signify the true variarces of the correspondiny theoretical sampling
If is a true measure of variance attributable to the stratification of
large, so that 7 < (r — D=1,

Both ¥ and ¥, in this conte
distribution. T'hus ¥V, itse _
the parent (standard urn) universe only when 7 15 very
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A casual reading of some text-books in common use might give the .bcginncr the wrong
impression that (i) above has a unique causal significance,* such as t!lat which we have clarified
above. Needless to say, this is not so. Our examination of the umpire-bonus model has shown
us that the meaning we attach to the two components on the right-hand side of the equation
depends on whether our concern is with the consequent relation of the score of the player with
that of the umpire or the concurrent relation of the scores of the two players. If the latter is
our concern, (i) above contributes nothing to a meaningful interpretation of explained variation ;
but if ¥,, is the variance of the player’s mean score associated with a particular value of the
umpire’s score, it represents that part of the variance of the playcr’s score distribution attribut-
able to the umpire’s contribution, On the other hand, it would not be true to say that ¥V,
represents the part of the variance of the score distribution in our Lexian universe attributable
to the stratification of the universe. If 7 = 2 in (vii) above, the part of the variance attributable
to the stratification of the universe is in fact 3V, N

When we turn our attention to a related model illustrated in Fig. 81Ce shall sce that Vi,
in (i) above does in fact have a causal meaning in terms of a standgrd Uhiverse, but not en
rapport with (xi); and it will surprise us less to find that the meat}ing\'we can rightly attach to
V,. in this equation depends on the statistical set-up under censideration, if we first take
cognisance of the fact that the additive relation it exhibits has .dothing to do with the theory of
probability. It is in fact an arithmetical property of any grid\set-up like the grids of Chapter 9
with two sets of border scores or the grid of Fig. 80 with.jts’single set of border scores, and we
might well have sidestepped the derivation of (v) abové by exhibiting it as a particular case of
a general rule. 2N

Let us suppose that a grid exhibits a set of, B'séores laid out at the margin of its R rows.
The C columns of the grid we shall label 1 tq € We shall denote the B score of a cell in the
rth row and cth column as b, with frequency'y,,. By definition, the sum of all such frequency
cell entries in the grid is unity, i.e. N

We shall also use y, and y{ tespectively to denote the column and row frequency totals, so
that \\_c e
~ s\" z Yre = Vo and z Yoo = Iy
L 3} =1 e=1
If M is the mean “’fﬂl}e of all the B-scores and V, is the variance of the B-score distribution for
the grid as a wheles

\™ T=Re=C t=R ¢=C B
Mb = 21 zlyrsbrc and Vb = z z Yra - bEc — ﬂ’f? . . (Xill)
r=1¢= r=1¢=1

Within the cth column we may write for the mean B-scores whose total frequency is v,

If=R

Mba = — z yrc . bru . . . . . . (XiV)
yc r=1

The mean value of My, is, of course, M,, s is evident from the fact that we may write it in the

form o

Zl .yc - "'?I'fba.-

= Ehurchill_ Eisenhart, Biometrics (194_?’), V_ol. 3 {pp. 1-21) is noteworthy as one of the few writers who have under-
taken a logical analysis of the assumptions inherent i current procedures invoking the partition of variance.
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But from (xiv) and (xiii)
ce=0 r=:R

=10
2 yc‘?uba = Zl Zl yrcbrc = ‘Mb‘

£=1
For the mean value of the square B-score in the C columns, from definition we thus obtain as
the variance of the distribution of the B-score column means
e=0
V(M) = > v,. M2, —M; . R 694
c=1
Within a column the variance of the B-scores is
-1 r= R

LA, 2 2
Ve == — z j’rcbro - IMM‘

Yer=t

The mean value of the variance of the B score distribution within a column is thetefore

e=C ¢ '\:\
MVy) = 2 ¥ Voa N
i::') rex H em O (":}.
= S Ve Bo— 2 M . . . {xvi)
G-l =1 =1 .“’EK\
By addition from (xv) and (xvi) 4
r=l e=C \
VM) + MV =S 3 y{gzﬁ; M2,
=l o=
Hence from (xiit) AWV
Vy == V(Myo) £N(V) . . ’ . - (xvid)

The foregoing argument is evidently valid for_ hoth dimensions of a grid with border scores and
border frequencies in both dimensions, as in\Chapter 9. 1If, as in Fig. 80, we lay out border
scores in only one dimension, the foregoi{rg derivation is equally applicable, since an altcrnative

. +$) 1
set of A scores does not come Into th{\p‘mture. If we allocate one urn to each column, y, = o

but if we care to include more tlialt one urn of identical composition in a set-up of « urns of
which we allocate % of identical’omposition to the cth column, y, =k =~ u.

Thus the relation e:glii‘h.ifed by (i) above is one which merely summarises the lay-out of
any grid whose cell enfries’are frequencies referable to border scores laid out in one or other
dimension. As suchfhere is nothing sacrosanct about it from a statistical viewpoint, still less
in terms of the sepantics of causation, except in so far as it is true that

(a) Statistical independence implies that ¥V, = 0, though the converse is not necessarily
true ;

(b} One-to-one correspondence of A with B scores in a grid with both column and row
border scores signifies that M, = 0 in both dimensions.

Against this background let us now examine the propertics of the model illustrated by Fig. 81.
Instead of taking samples of equal size from ums of different composition, as in the Lexian
model of Fig. 80, we now take samples of different size from one and the same urn. The
assumption is that the number of samples of each size is equal and indefinitely large. The
chart exhibits an arithmetical example which we may generalise without difficulty by recourse
to (xvii) above. Our problem is the long-run distribution of scores in a set-up which involves
extracting simultanieously a sample of 1, 2, 3, etc., from a single universe in which the fixed
expectation of success at a single trial is p, that of failure being g = (1 — p). We lay out scores

26
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EXPECTATION - ACCOMPUSHMENT MODEL FOR SAMPLES OF DIFFERENT Sizg

L} 1
F T ¥ ’ r

sme u;n .”t” oo;scoooRE %")o;oo uzoo oo;oo I
O t % $ o o 0 o E— é“
O 2 % % 3 0 o N §F 0§
o000 3 ¥ & F o & % %
o000 4 & % % & 4 o £ %
O00COs # H® #®/ B/ & H & ¥°

-t e §

Mg = 1 Vg = 'g-

R
Fra, 81, Expectation-Accomplishment Model for Samples of Different Size. In this set-up the player extra}ct_s
eith replacement samples of 1, 2, 3, 4 or 5 balls Zepeatedly from one and the same urn, ‘The columns exhibit
the theoretical sampling distribution w.r.t. a sariple of a particular size. 'The cell entries exhibit the frequencies
in fractional form. T compute the variang&ef the total score distribution directly, the reader will find it con-
venient to express them, as in Fig. 80, by técoutse to whole numbers referable to the common denominator 243.

(x.) at the head of the columns, and each row represents the score distribution for a sample of
a given size. If w, is the siz8’0f the sample definitive of a row score distribution, M, the corre-
sponding mean score, ¥, 4 the corresponding intra-row variance, and 7,
we derive from the familiar properties of the binomial distribution

QO MV.) = Mxpg) = pgM(s,) = rpg.
¥v,is ghgfwiilriance of the distribution of suc

the mean sample size,

cesses (x,), we obtain by recourse to (xvii) :
<\} . Ve — V(M) =rmpg . ) . . . {xviil)

We can eliminate in many ways all variance attributable to the circumstance peculiar to the

model situation, i.e. that the sample size is itself variable, but the least arbitrary choice -iS o
make the size of each sample the same as the sample size mean (7.), as is possible if 7,, is an
integer. If so, the variance () of the sample distribution so standardised would be
V, = Fmpg.
With this interpretation of what we mean by eliminating the source of variation peculiar to the
model situation we therefore obtain the identity
Vo=V, =7V,

r.t, the correlation of the player’s score with that of the
equivalent to (xi) above.

"This recalls our partition of variance w
umpire in 9.03; but is evidently not
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EXERCISE 1001

A pumber of black and red balls are placed in four urns so that the proportion of black balls is as

follows :
Utrn . . . Y | B C D

Proportion of black balls . o 1 1

el

1. TFour balls are drawn with replacement from each urn. Set up the Lexian grid for black ball
scores and evaluate ¥, M, and ¥ w.r.t. the B scores (x,) set out at the margin of the rows in Fig. 80.

9. One ball is drawn from urn 4 ; it is replaced in the urn and two balls are drawn simultaneously
one from urn A and one from B. After replacing the balls, three are drawn simultaneously, one each
from A, B and C. Finally, after replacing the balls, four are drawn one each from{@, B, C and D.
Set up a grid for repeated trials of this experiment scoring the black balls. Workwout 'V, M, and V.

RS

3. TInsert the expected frequencies (x,} at the head of the columns of the Lexis grid obtained

in 1. From the expectation and accomplishment grid thus set up, evaluate Cog (EB), and verify that
v (O
P = ?:- "‘\

. . A\
4. The Danish actuary Arne Fisher set up 20 urns each ¢Ontaining 40 balls, black and white in
different proportions. From each urn he drew 500 balls wi.th,\replacement and obtained the following
results : )

«)

No. of black balls in urn .20

No. of white balls drawn . 251

91 22

: |

246 222216408

— 7%

176| 183173 43

Work out the mean and vananc;e%)f this distribution and compare them with the theoretically

expected values. o\
\¥/

I .*.3[ S | I '
23, 24; ,2§*| 26 27 23‘ 29 30 31| %2' 33‘ 34 35‘ 36 | 37 38[39‘
29 _‘

| !
156 135I140 127:115, 96 i 78| 69| 55
] |

‘19

|

:~\":}ﬁ.02 THE Poisson MODEL

One conscquence of th} foregoing partition of variance in the Lexian system of sampling
from urns containing-&qual numbers of balls has a special interest in connection with a seemingly
paradoxical co%‘@iuénce of taking unit samples from different universes. If ¥V, is the variance
of the score distribution w.r.t. extraction of samples from the standardised urn (Bernoullian
u.mverse), and V7 is the variance of the score distribution for extraction of samples of equal
size from urns of different composition (stratified universe), we have seen that 1

V'I.. = V5 :%—1 F o

If the sample size (r) is unity, this means that
Vi="V.

Hence in virtue of the partition (xvii} of 10.01, which we haw is
e e e s ch we have also established as a property of

Vs = ﬂffu + Vm.

26%
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To get the meaning of this breakdown of variance into focus, let us consiler a sinaple numerical
illustration. We suppose that we may take one ball from cach of three urns o ostituted as
foliows :

Urn A 4 Red 8 Black

Urn B 6 Red G Black

Urn C 3 Red 9 Black

If we score the extraction of a red ball as a success, we may sct out a frequency

Jditeihution of
the result as follows :

Score Urn A Urn b Urn €
0 i3 S
1 P 3
NICE.II % % % X 2 \,,>
Variance £ 1 135_. QO
From the above we obtain R N
Va=33+1+%) — 3G + 4 - 3N 514,
M~ 3+ 1+ N -
WM,V = 1223{3.:§ /
Now the composition of our standard urn will be o\
Red 4 + 8+ 3 = 13
Black 8 +%6 + 9 = 23
' Total 36

Thus the probabilities of drawin

RN :
[ g@of failing to draw, a red ball from the standard urn 1 a
single trial will bhe \

5 p=3 @i g~

{ 6
NS

If ¥, is the variance of the unit sample distribution, we therefore obtain

'"\\~

\4 . 12 3

AN Ve=13%. .38 = 2%,
Hence, as above,)(é \Obtain for the unit sample
\\3 Vs:Mn+Vm=VL-

Let us now suppose that we take a unit sample from each of the same three urns, and score the
sum as the result of the 3-fold trial,

; t ‘ We may set out the frequency distribution of the total
toore as a staircase diagram (Fig. 82), from which we get the following frequency distribution
for the 3-fold trial mvolving the extraction of a unit sample from each of the three urns.

Score 0 1 9 9
Frequency o 13 8 e
If we denote the variance of this distribution by v,

v, 11(1) + 6(4) + 1(9) _ [11(1) + 6(2) -+ 1(3)]2 9 _ 285
24 24 '
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POISSON TRIAL OF THREE

Fic. 82. The Poisson Mod ‘.?‘f'his staircase diagram exhibits the derivation of theoretical sampling dis-
tribution of an indeﬁnitely\%n;ge number of 3-fold trials, each involving extraction of a wnit sample from ong
N\ of three different urns.

T,
R

The reade\‘wi;ll\hote that :

(@) The last figure is three times the mean variance (M, = %%) for the unit sample dis-
tribution in the stratified (Lexian) universe ;
(b) Tt is less than the variance of a 3-fold trial from the standard urn, since the latter is

3.13.23 299

8pa=—7%mm “m

Here then is a sort of stratified sampling which admits of less variation than sampling from the
homogeneous parent universe of the standard urn. It is common to refer to it as the Poisson
system, and we may set out the relations illustrated above more formally as follows. We shall
denote the probabilities of drawing a red ball from the three urns A, B, C as p,, p» and p, respec-
tively, corresponding variances for the unit sample distributions being then p.gs = Pl —2),
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Pogs = po(1 — 1) and pog, = p{1 — p;). Since the trials are independent, the variance (Vo)
of the score sum distribution is given by

Ve :Pa(l _Pa) _lL'Pb(l _'Pb) +PB(1 _Pc)
But the mean variance of the system of usit samples in the 3-urn Lexian universe, denoted
abhove by M, is
21 — pa) + (L — o) + p1 — po)
3 »
e VP - 33’!‘,.

For the variance of the score distribution of 1-fold samples from the 3-,1{111 universe, we
obtained

VL:pq:Mw -+ Vm- O\

{

NS o .
In the above V,, is the variance of the distribution of unit sample reans, i.e. the distribution
of g, Po, P and we may therefore write more explicitly V,, = V486, that

3pg = 3M, + 37, &°
=V, + BVD !
" Ve=3pg — 8V,

More generally if the number of urns from which \}ré:zlfraw unit samples is 7, and 7, as hefore
is the variance of the distribution of the score total §.)

®d

Vo= 3 0080 = 3 (0 — Y
sl ’j:' F=a 1
:3‘1”5_ Xa=F 2 ‘ o . . N . - (1)
s—zzfp sglps

L .
To construct our standard u%‘ in which the

proportion of red balls is p, we postulate that
the 7 urns contain the same pumnber of balls,
S

in which case p is the mean value of B, and
\ 1s=r
\\\ Vo= ;zl Py
N o=r )
A\ S Ve= PR —rpr _ \ _ , . (i)
 § ‘\. ’ S ] .
For the san{?ga};on

2p=rop )

5]

Hence by substitution of (i1) and (iif) in (i) we get

V,:?j)——(r.V,,-{—;pz)

——-rp——ypz-—r,]r/p
:rp(l—p)—?-Vm .
=rpg—r.V, . . . . . . (i)

This result exhibits the variance (V)
different universes in terms of the vari
and the variance of the mean unit s

of the distribution of the score sum of # unit samples from

ance {rpq) w.r.t. r-fold sampling from the standard universe
ample score within the stratified universe,
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SCORE GRID AND FREQUENCY GRID

P Q RS wnoe
11351211005 4%
nlr|aia;o;s|ss
milalyi2i6|2;%
r Mg = Myl 2§'ﬁ
wil7|i0] 8|25 w Grone wean (Mg =My
CF::‘:;“ % l% % Mpa \-’(Mm] varignee of Colurn Means 4 V(Mub) Yericooe of Row Meomy ?‘:':}
taa | e
Coturn % 254 §/ﬂ Wb M(Vpgl Meon Vorionce of Columns 25/ M [V} Mean variance of Rw
o l Totol Veriance  140% =  Towl varianee { NHOg)
O\
N\
A = dimensioral  Border  Seores R »
£
P Q@ R t 2 3 4 5 rdegue %
¥
gt | 61%|0O ilolwlnlo]| ndyslos %
d |
“2lololwl 1 |wlo|olnie]nr|3|w
e o
p ’ | 216
%3 %{0|0 | e '/9|L’q~\x0 0|
g W Grand
40| % KOy Toa | |
N AN g . - =14%
- Grang biedn (M) = 25}/9, Totah varance (Vo) |
25101510 Jgey Q'.’M'\?(Mub)i 2615 M (V! = 1191
F_'\.quu‘ecrE.:y V3 143 1/% I A A
My | 73| 105 B4 (b ean () = 25
Via & 2é/9i 8/:9 A Tolah Yariance (V) = I“‘O/3|

O~ VM = YR MV = 1265
X
Fic. 83, Seore Grid and Freqms.p'cif Grid, A grid exlhibiting cell entries as scores in columns and rows
definitive of a qualitative twoswiy classification without reference to border frequencies or border scores is
reducible to a freqL\ ney-score grid in either dimension, though not sirmultaneously in both.
&

. 18903 TuE Book-KEEPING OF o ScoRE GRID

h

Our Texis modelvhas shown us that it is possible to partition the variance of a distribution
in such a way as to separate components attributable to different sources of variation, if we agree
to adopt a particular criterion of homogeneity, viz. a standard urn of a particular composition.
The student may surmise with good reason that a corresponding yardstick of homogeneity is by
no means easy to formulate in connexion with statistical problems of everyday life ; and we
shall now examine a model of which it is possible to envisage more clearly the causal interpreta-
tion'of a breakdown of variance, and to do so in a less arbitrary sense.

Our new model, the handicap score-grid model, like those which went before is the model
of a umiverse, Tt is necessary to state this because the score-board of Fig. 84 recalls the lay-out
«f sample scores for the statistical technique known as analysis of wariance ; and its design s to
clarify what assumptions the use of the latter invokes with special reference to a class of situations
involving two putative sources of variation superimposed upon a third. The following is a
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hypothetical illustration, A Iaboratory worker records a single determination of the bload
calcium level of 5 rabbits at four-hourly intervals from noon to 8 a.m, inclusive., In such
a situation, there is a basic substratum of scatter due to instrumental errors inherent in the
method employed in the determination. Superimposed on this score of surition are :
(a) intraspecific variation at one and the same time ; (d) possible variations of the bleod
calcium level of the same animal customarily included under the term diurnal thythm., In
such a situation we can lay out our data ona 5 X 6 chessboard assigning all figures refcrable to
the same rabbit to one of the five columns, and all figures referable to the same tine of day to
one of the six rows.

When we do this, it is important to be clear about (@) what arithmetical properties of
such a score-grid are inherent in any such lay-out regardless of our statistical precueeupations
(6) what sort of statistical questions we may ask about it and what they severally imiply concern-
ing the structure of the universe from which we extract our sample. At theoutset, we should
also be clear that the several statistical issues to which we customarily apply the term analysis
of variance invoke identities which have no necessary connexion with statistics. iyhen we
arrange data as indicated above, our score-grid of R rows and &\Columns exhibits a single

score In each cell with frequency RE but we can lay it out.fsee’ Fig. 83) in cither dimension

as a frcquency grid with appropriate border scores, thou h nbt stmultancously in botl.  Con-
sequently the relation exhibited in (xvi} in 10.01 is valid“w.r.t. both columns and rows. In
either dimension, the total variation of the score distribution is necessarily the same, since we
are dealing with only one set of scores, and the frequency of any cell entry of a grid with R

rows and C columns, as in the schema below, is then the reciprocal of RC = N the total of cells.

.@ﬁmn
1 2 e ~fj' e .o [ No. of Cells
! & | | h i
1 X171 1 X1z . {'"‘\ I PN |[ Xyer | o l
2 ECA Xy : \ \\ I [ i__ __i Xap ‘ [ i
Row oy T T
ot o x@ _____L | SRR C ‘
e T | b | _|
W !
- '_Jl;'__' o | L ¢
R -”fﬁ{: Ny xgs C o %pe | o x;j C _|
No. of cells \m W R R l R R—h‘ R—‘__RG _\ |
e - 1 —

Without gu‘ida{lce from v}fhat follows, the student may indeed find it helpful to repeat as an
exercise the derivation of (xvil) in 10.01 as it applies to such a set-up, making use of the fact
that each column contams R cells and each row contains C cells, so that

c oLl _R_1 c 1
T RC T RETE ST
If %, is a score in a cell referable to the th o

w and cth col ;
(M) and total variance ) and cth column, we thus have for the grand mean

}]/I:__-cic riR d V 1 e=Cr=p \ ’
RC & f=.1xn " :j@z Zxrw—ﬂ/ﬁ. . . (D)

e=1 rai
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For the score distribution within thc #th row the means and variances will be

1c=C c=C
. and V,=—= 2 xk — M.
f chl xf ¢ C-‘:Zl

Also for the grand mean of the row means we have

Whence we get

F=R o= r=R
o) — S om0 ad 27)=g5 3 PERESRNNC
By combining (ii) in virtue of (i) we thus have N\
V= V(M) + MV . - oy - ()
Likewise, for the intra-column means {M) and variances (Ve) . O
V—VM)+ MV) o A S %'

In 10.04 we shall examine what circumstances endow ano‘E}Er statistic ¥, with a special
meaning. Its definition is

a\J .
v,—v—vM)—¥ary .. . - -0
Hence by (ili) and (iv) we can write v :
V, = Vc) J{JM wy—-v . . . - - )

To dissect the expression on the right, xt 184 COnvement to write the intra-class variances in the
form

v, =:l i\ xm —@)‘2‘ and V,= z (xrc - r}z'

0=1
1 ¢Z£ ¢ > ] t=Re=C
MVc - = re Vr—"— c_jwrz'
)~ Re 2 ? " MPD) = e 2, 2, B M)
Likewize we may writ \
Y e’\ r=HR ¢=
\' z z (3000 — DM
N N f 1 ¢=
Since RC = I\}the total number of cells in the grid, (vi) becomes
r=R ¢=C
NV, — z Z (20,0 — M2 + (200 — o — (e — My}
r=1¢=1
t=HKe=L
=3 > () — 2Mox,, — 2Myxp0 -+ 2Mxp + ME 4 ME— M3,
r=1 ¢=1
r=He=0C
z z [(x,0 — M, — M, - M2 — 2(M* - MM, — MM — M, M)]
r=1le=1
p=Re=(!

! r=Re¢=
=S T (e— M, — M, +MP—-23 ZC(M— MYM — M)
r=1le=1
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The sum on the extreme right is

r=2n1 e 0
2% (M--3) > (M M)
=l e —1
i r=R ¢=C )
s Ve s D S, M - ML M _ (v
Nr=}. -1
We shall later find useful the following relation which is likewise an arithiucticnl preop e ol any

score-grid.  If M, is any number
(M. - My=(M, — M) — (M — M) and (M. MY (M My i 10,
Co(M, = MY = (M, ALY - (M, - MM My - (W
Since (M= M) (M 3 (M 3y
AM, — MM~ M) 20 M), M) 20N
s (Mo~ MY == (M, — BLY - 200 M) M) oW

The sum of the deviations (M, — M} of the column means Mo fEdm Uie grined e, which is
also the weighted mean of the column means, 1s zero.  Inalhis expression hoth 3/ and 7,
hence (M — M,) are constants, so that N

c ’:" o
22.(M — MY(M, - M) 2R8NS (M, N,
1 OO 1
The expression under the summation sign on t.ht{;ri"ght is the mean of the deviations of the
column means, hence by definition zera, so thates

NS

o N\
22 (M ML) (M, — ). 0.
2\

If therefore we sum the terms in th\iﬂxo’v{: over the C column values, we obtain

C N\ G Z
g (M, > - Z (M. — 3L)® - S (3 — a1,
O !
i ‘t.\n c
\\\ =D (M, — M) — () — AR,
- ‘ 1L ' 16
S =M= a0 = B n a0 e (i)
In the same w\y we may obtain
1E :
VM) = o2, ~ My~ (r—3ry: . (i)
1

10.04 Tue HaNnpicap SCoORE-GRID MobpeL

In contradistinction to the arithmetical tautologics set forth in the preceding section, the
sco.re~gr1d lay-out of a sample has statistical properties which depend on the universe from
which the sample comes. What we customarily call analysis of variance covers statistical
questions of three sorts, and it wil] be easler to distinguish them, by reference to our rabbit parable

at the beginning of 10.03 than by stating them in formal terms.  We have there specified three
putative sources of scatter within such 4 table :
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(@) common to all cells, * residual ”” errors of measurement inherent in the method of
determination ;
(b) a between-row component ascribable to diurnal rhythm ;

(c) a between-column component ascribable to intra-specific variation.

With respect to such a situation the three sorts of questions we may ask are as follows :

(i) is any one source of variation negligible ?
(ii) what estimates of the several cormponents are unbiassed in the sense defined in 7.06 7

(iii) to what limits of errors are such estimates subject

We may speak of (i) as testing the null hypothesis that the universe is Aomogencous in one
or other of three dimensions, of the second and third as that of constructing a Balunce sheet of
wariation and of validifying the entries. As Churchill Eisenhart has emphzisiged, few among
the many research workers who use the analysis of variance sufficiently reeagnise that the con-
struction of any meaningful balance sheet of variation invokes assurpg‘gib’ns irrelevant to the
rejection of a null hypothesis, and that its validification invokes additipgial assumptions irrclevant
to adequatc reasons for conceiving the possibility of constructing, pne” The problem of signifi-
cance wis-d-vis testing the null hypothesis or assessing the erropiutherent in the construction of
the balance sheet will be the subject of separatc treatment iy Vol II. Here our concern is:
(a) to exhibit what properties of a unrverse justify a true bill in the scnse specified by (i1) above ;
() to indicate that criteria of homogeneity can stand githicir own fect without recourse to the
assumption that the universe may have such propertiés.”

The handicap-score grid model of Yig. 84:§xhibits the build-up of a universe whosc
structure permits us to entertain the possibilityof making a balance sheet of variation.  What
we there call the players’ score-board exhibits 1h each major-ccll a complete distribution of the
red-score of a single individual in a 4-fold trial with replacement of each ball chosen before
drawing another from an urn contal ihg”2 red and 2 black balls. Each such major cell has
therefore 16 sub-cells to accommodate scores of 0, 1, 2, 3, 4in the ratio 1:4:6:4:1, so thata
score of 0 or 4 each oceur in 1 suPyscell only, a score of 1 or 3 in 4 sub-cells and a score of 2 in
6 sub-cells. To suggest the ifed that the scores of different playcrs at successive trials are
independent we make th{;a:rangement of the scores in the sub-cells different, though the
distribution and mean valugs of scores in cach major ccll of 16 sub-cells is the same.

We can now assutne that each player at each trial receives : (&) one and the same bonus
(handicap) in virgaeof his membership of a *“ column team ” ; (¥) one and the same bonus in
virtue of his membérship of a row team. The score-boards on the left and right respectively
exhibit the result of allocating the column bonus and the row bonus singly. 'The final scorc-
board assigns to each player at each trial his total score in virtue of the addition to his own of the
cgmbined bonus. In this universe of scores we therefore have : (a) a residual component of varia-
tion attributable to the individual score distribution common to all the players ; (b) a between-
row: component of varjation arising from the fact that different row teams receive a different
bonus ; (c) a befaween-column component of variation arising from the fact that different column
teams reccive a different bonus. The Jay-out implies that the distributions of the two bonus
systems are independent of one another and of the player’s luck.

The beginner will find it helpful to check over the marginal figures for row and column
means and the variances of the row and column distributions.  Each score board illustrates the
two numerical tautologies .

M) V(M) =V =M+ VM . . . . ()
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If we define V', as in (vii) of 10.03, the four grids also illustrate the numerical tautologies specified
by (iv) and (v} in the same context, vsz.
MV)--MV) =V =V, =V -V(,)--V(M) . . . (i)
Either of the foregoing is, in fact, a property of any gric.l-wise lay-out of _numbers, regardless
of their statistical terms of reference, if any. To appreciate what the grid lteac.hes we must
take stock of the variance of each bonus system, For the column-bonus distribution, the mean
is (14 24 0) = 3 =1 and the variance V{b,) is :
202+ 1229 — 12 =2,
That of the row-bonus distribution (3,) is :
07+ 14204 4 — (e = 08, 8
The specifically statistical properties which the model brings into focus are’y,

(2) as defined by (ii) above and (viif) of 10.03, the statistic ¥, of the fihal score-board is also

the total variance of the original homogeneous (players’) scope<board, and as such is an
exact measure of residual variation ; >

ot ¥

(b) the mean value of the within-column variance in the ﬁi}}l\ score-board is :
MV =3k =1+ 3% = V., $V0.);
(¢} the mean value of the within-row variance of tHe final score-board is :
M(V,) =% =13 W7+ Vb
(d) the total variance of the final score-boarq{.’ijg
V=388 =25 + 2 &Y = V(b,) -+ V(b) -+ V..
'These relations—which, are statements about the structure of a unizerse in contradistinction

to statements about a sample—are eagyto" derive from the properties of the model in virtue of
the assumptions that A

k™
() the three score distributidns are independent ;
() the three score compenents are strictly additive.

If we denote by x the plgy{:?*s"o“m score, by b, the column-bonus and &, the row-bonus, we may
write the total varianc,é\\bf ‘the final score-board as

N 4 :.V(x - b+ b,).
In virtue of indc\pl@nﬂenoe, we therefore have

~ V = Vi) + V) + Vi),
In this expression V{x) is the variance of the distribution of s
of the players’ score-board, and there denoted V), so that
V=Vi+Ve)+VEy - . . . . (i)

variance as the sum of three components, each being the variance
one of three sources of variation. Within a row of major cells,

cores in the homogeneous universe

This equation exhibits the total
of the distribution definitive of
We may write

Vo= V{x+ b, + 8,
Since b, is constant within the row, it merel

3 y changes the origin witheut affecting the scale of
the distribution and therefore makes no cont

ribution to the variance, i.e,

V, = V(x) + V(b.).
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Now the distribution of the x-score component in each major cell is the same in each row and
the same as for the original players’ score-board, ie.
V, = Vi V(bﬂ)-

Since each term in this expression is a constant of the set-up

M(V,) =V, + V{b.).
Likewise

MV = Vi + Vib)-
By definition

Vv, =MV,)+ MV)—V.

Whence we derive for the final score-board value of ¥,

Vg = Vl'

Q)

Thus the universe values of V,, M(V,) and M(V,), hence alternatively of ¥, J{(#1,) and V(M)
in virtue of (i) and (ii) are all expressible in terms of its three components‘\oi.\?ariancc. Hence
also it is possible, as we shall see in Vol. 11, to use the sample values of these three statistics to
estimate the components of variation, if the universe has the structure implicit in the model. To
say that it has such a structure is to say that the sources of variatigngare strictly additive, and it
is important to recognise that this condition is essential, if a-bélahce sheet of components of
variation attributable to one or other sources is in fact a true il If we examine a sample with
a view to making such a balance sheet it is therefore imporfarit to be quite clear about whether
the additive postulate is applicable to the situationaThe reader, if also a biologist, may
therefore reflect with profit on the following remarks oD Churchill Eisenhart :

“ .. . Hence, when additivity does not pr{;faﬂ,’ we say that there are interactions between
row factors and column factors. Thus, ifi“the case of varicties and treatments considered
above, additivity implics that, under ,che~éenera1 experimental conditions of the test, the
true mean yield of one variety is greater (or less) than the true mean yield of another variety
by an amount—an additive ¢o t, not a multiplier—that is the same for each of the
treatments concerned, and, convetsely, the true mean yield with one treatment is greater
(or less) than the true meamvyield with another treatment by an amount that does not
depend upon the variety eohcerned ; which is exactly what is meant when we say that
there arc no * intcrag:j;%ghé » between varietal and treatment effects. . . 2

Though it is nece.ss§y"to postulate the additive principle as a bass for estimating components
of variation, and to.fnake additional assumptions about the nature of the component score dis-
tributions if ogr«ajrﬁ is to assess the error to which such estimates are subject, we shall now see
that the additive.pbstulate is irrelevant to the definition of criteria of homogeneity. Itis therefore
somewhat unforturate that the single expression analysis of variance has come into usc to describe
each or all of the procedures distinguished as (i)-(iii) at the beginning of 10.03, the more so
because the most widely acceptable procedure included as such does not strictly entail a break-
down, and hence the possibility of a balance sheet.

10.05 CRrITERIA OF A HOMOGENEOUS UNIVERSE

In the jargon of statistics, we distinguish the four grids of Fig. 84 as being respectively -
{a) homogeneous in both dimensions, as we assume to be true of the original players’ score-
board ; {b) homogeneous in neither dimension, as is true of the final score-board in virtue of the
two-way bonus allocation; {¢) homogeneous in one dimension only, as is true of the remaining
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pair. Commonly, the term homogeneous implies sampling from the same universe ; but this is
not inconsistent with our use of the term in this context. If two players (A and B) who respec-
tively receive a bonus of 2 and 3 each draw a 6-fold sample from the same u aiverse, in this cage
an urn containing two red balls and one black orne, recording as their original scores the number
of red balls in the sample, we may regard their final score as respectively recording the result of
drawing 8-fold and 9-fold samples from a stratified universe of which onc stratum {from which
cach player extracts six balls is the same, the other being an urn consisting of red balls only.
Thus we may put our question in the form : do all the players draw the same nuniber of items
{balls) from the same universe (urn) ?

Let us first examine the consequences of the null hypothesis that a grid such as the final
score-board of Fig. 84 is homogeneous w.r.t. the vertical arrangement of score entries by columns,
Le. that players in each column team receive the same bonus—or none at al{,> 1% do justice to

the issue we must retrace our steps to the argument of 7.06. Our nulizhypothesis predicates
that afl our column samples are samples from a single universe, the varifnte’of the unit sampling
distribution of which we denote as usual by V.. If R, the number ofentrics per cofumn were
very large, we could assume that V.=V, and hence that the megh Value M (FJ)otf V. is a good
estimate of V,. Now the variance of the column means is itself An estimate of th:¢ mean score
for R-fold samples from the same universe. In accordance ¥t (vii) of 7-03, we may therefore
write V(IM)~V, =~ R, We can thus arrive at two i:@ependent estimates of }7,, and they
must agree within whatever limits of confidence we &dre to impose on permissible sampling
error. This gives us the expected value of the ratio“ZPf(’Vc) + K. V(M) ~ 1 when R is large.
In fact, R may be small. To apply this eriterior{, We must then define a statistic whose long-
run mean value is ¥, in terms of MV, emp?rica]ly defined as in 10.04, and a statistic whose
long-run value is ¥, in terms of V(M,) defined likewise.

In accordance with (i) of 7.08, we Gah define one statistic whose long-run mean value is
Va F)Y R.V,~(R~— 1). It will be eonvenient to sidestep use of unwieldy symbols for sum-
mation ?f all possible samples weight?d by their 2ppropriate frequencies, by recourse to a more
economical notation for the expﬂ{(e‘d (i.e. long-run mean) value of a statistic () *, viz.:

E(v) = Zy,.v.

So we now write O\
- .
e R R
O E(___ . ) — __
A R-1 V”_ Vs gy BV,

The C columnsrovide us with Csuche

s stimates, the sum of whose expected values is therefore.
C.V,s0 t{{it‘;we may put

R -V
/18 CR - C

o B[+ V.,) _CR—C
(cz cr YV

o Eawy =Y O

4

. Vu .o .

* Vide note in 7.06,
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From the same point of view, let us now consider the relation_ of V(M) to V,, deno_ting the
true mean of the putative common universe of our null hypothesis by M, the truc variance of
the sampling distributions of the means of R-fold and N-fold samples thcrefromq 1'espcct1':rely by
VM) and V,(M). Asin 10.04, we denote the grand mean of the sample as 4 of which M,
is the expected value. In accordance with (vii) of 7.03, we then have

EM,— M) =V, M)=V,+R=C.V, =N,
E(M — M2 =V M)=V, =N,

o B(M, — M) — EM—-M)y=(C—-1).V, =N . , . {H)
By definition, our empirical statistic V(M) satisfies the relation N\
I & O\
V(M) == (M, — M) A
C 1 Ny
In accordance with (viii) of 10.04 above, we may therefore put ~“
c AN\
BV — B, (M, — M.y —B0M - M,)*
1 ~\J
N

7

The long-run mean value of the first expression in paréhthiesis on the right-hand side is the long-
run mean value of a sum of € such terms, so that /AN

c "';
(l—jEz (M, — My)* = E(M, — M,)*,
1

- E[V(M)] =E(M, — M,)* — E(M — M,)".

Whence, from (ii) K N
& N

N 70 R CEte L

By combining (1) with (i.ii);:\;'é“have
ON N
Z“\."——v = i ———
:\\.. c_ lE[V(Mc)] Ve N — CE[‘!W(VG)]

Thus V,, is thqiriéan value of either of two statistics which respectively refer to variation within
and betwe@e'co]umns, viz. : '

N Myy wd v

N=C . ( g) @ C‘_——i . (i c).

The expected value of the ratio of the two statistics is therefore unity, if the nul{ hypothesis is
correct. 'Thus we can test the null hypothesis, if we can determine the sampling distribution of

this ratio in accordance with the assumption stated w.r.t. its mean value, ie.
_i .
(€ — DM(V.) ~1 . . . . . @)
(N — CYV(M,)

In accordance with (iii) of 7.03 our estimate of ¥, based on ¥, the total variance of the N-fold
sample distribution, itself would be

N -1

Ve~ N V. . . . . . . W)
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£ the grid is admissible if we formulate the problem with

" .- ‘| . . ‘.t -
Ancther criterion of homogeneily O s of the final score-

ibili i s to both te
* to the possibility that the allocation of the bonus : > fina x
b eIlif Fig. 84 may be heterogeneous by recourse to the relation ‘betv\-(,m : {a) the
(Vy; (b) the yariances of both sets of means. T'hat is to say

V = V(i r) + V(ﬂ’fra) Il_ Ve: . . . . . (Vl)

due regar
board of the mode
total ahserved variance

n geentdancs vith A1y of 10.04
In accardance with (vii} (e — My — M, 4 MY
¢ = N '

'{'he cxpected value is deducible from (v) and (iil) above, viz.:
EV)~=EVy—E. V(M) — E. V(M)

f‘r - 1 R - 1 C - }- '
——_ ! 5 —— r———— —_— I u g
= 7 . E;-u 1Y . 7 [’ N LW

(N—R—CH1)
N

¥ <
ue ~

Bince N —= RC, \
N—-R—-—C+1I=(R-—-1)C <‘1),

A0

E.(P'g)z(uw?u,
We thus have : (@) two estimates of ¥V, respectiyély based on V(M) and V(M.); (&) a third
estimate based on ¥, defined by (viii) and (ix) #310.03 being the difference between their sum
and the tots! variance,  Accordingly, a test ofilomogeneity which takes stock of the variance of
the nweans in both dimensions is .

N0 N
(a) =, _1)zVu:mV(M,).
NV . N
(5}\,;@ o=~ et M
‘\'\\:"'- .,._._.__._V-B—ﬁ..z ] o~ Ve ..
N T ({C—-yiMyT T T R—-1)V(M) - ()

N”
The cred({ﬁg{ls of tests devised by

R. A. Tisher and by Snedecor for nssessing .
significince of 8 or tor assessing the

. g io13 defined by (iv) and (vii) rest on a theoretical foundation we shall explore in
\*01..11. What {;alls for emphasis in this context is that the several criteria of hm‘n._n reneity
applicable to a grid set-up of cxperimental data can stand up to eriticism without the t ‘%t'}“ N
of a balance sheet purporting to set forth additive com nely atts
butable to a particular score.

The criteria themselves are deducible without any
the score distribution, normal or otherwise. On the o
them necessarily invoke such assumptions. Similarly
sheet, if the construction of a balance sheet 1s indeed ;;
about the distribution of the row and column score
restrictions on the sampling process.

ul
ponents of variation, cach uniquely attri-

assumptions concerning the nature of
ther hand, significance tests hased on
the‘validiﬁcation of estimates of a balance
alegitimate aim, calls for special postulates
-increments ; and this itself imposes certain
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